Crystalline vesicles are promising nanomaterials due to their mechanical stability in various environments. To control their fabrication, it is essential to understand the effects of different experimental conditions on crystallization. Here we perform atomistic molecular dynamics simulations of anionic lipid membranes of 1,2-dilauroyl-sn-glycero-3-phosphol-L-serine.
View Article and Find Full Text PDFCoassembled molecular structures are known to exhibit a large variety of geometries and morphologies. A grand challenge of self-assembly design is to find techniques to control the crystal symmetries and overall morphologies of multicomponent systems. By mixing +3 and -1 ionic amphiphiles, we assemble crystalline ionic bilayers in a large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes.
View Article and Find Full Text PDFWe study the static and dynamic properties of water near a poly(styrene sulfonate)/poly(diallyldimethylammonium) (PSS/PDADMA) bilayer adsorbed onto a substrate by atomistic molecular dynamics simulations. Qualitative changes in the dynamics of water in the proximity of the adsorbed bilayer are observed - such as in the lateral diffusion, residence time and hydrogen-bonding lifetime - as compared with water in the presence of the bare substrate. Static properties of water are similarly influenced, and a high polarization of water molecules is found to be present surprisingly far from the adsorbed bilayer.
View Article and Find Full Text PDF