Publications by authors named "Banys J"

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn impurities in MAPbCl to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation.

View Article and Find Full Text PDF

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2).

View Article and Find Full Text PDF

Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking.

View Article and Find Full Text PDF

Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX perovskites (AZR = aziridinium; X = Cl, Br, I).

View Article and Find Full Text PDF

Following the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples.

View Article and Find Full Text PDF

We report on high average power, low threshold supercontinuum generation in a homogeneous bulk material at 76 MHz pulse repetition rate with amplified as well as unamplified pulses from a Yb:KGW oscillator. An octave-spanning supercontinuum was produced in undoped potassium gadolinium tungstate (KGW), which demonstrated robust, damage-free long-term performance with a total average pump power of 6.4 W.

View Article and Find Full Text PDF
Article Synopsis
  • * Experimental results indicate that the inclusion of BTO alters the dielectric properties of the composites and affects the temperature at which a dielectric anomaly occurs in the PDMS matrix.
  • * The composites exhibit piezoelectric behavior, generating measurable voltage signals under ultrasonic stress, making them promising candidates for use in efficient, lead-free nanogenerators that convert mechanical vibrations into electrical energy.
View Article and Find Full Text PDF

Bulk polylactic acid (PLA)/multiwall carbon nanotube (MWCNT) composites were prepared and investigated in wide frequency ranges (20 Hz-1 MHz and 24-40 GHz). It was determined that the percolation threshold in bulk PLA/MWCNT composites is close to 0.2 vol.

View Article and Find Full Text PDF

To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.

View Article and Find Full Text PDF

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH)NH][Zn(HCOO)] hybrid perovskite.

View Article and Find Full Text PDF

Inspired by the success of NMR cryoprobes, we recently reported a leap in X-band EPR sensitivity by equipping an ordinary EPR probehead with a cryogenic low-noise microwave amplifier placed closed to the sample in the same cryostat [Šimėnas et al. J. Magn.

View Article and Find Full Text PDF

We present studies on the microwave properties, electrical resistivity, and low-frequency (10 Hz-20 kHz) noise characteristics in the temperature range of 78 K to 380 K of composite materials made from bisphenol A-based epoxy resin and carbon fiber felts. Two types of carbon fibers were used, derived from polyacrylonitrile or regenerated cellulose. We show that these structures are suitable for electromagnetic shielding applications, especially in the direction parallel to the carbon fibers.

View Article and Find Full Text PDF

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA EA PbI ( < 0.4) hybrid perovskites.

View Article and Find Full Text PDF

Ceramic composites with nanoparticles are intensively investigated due to their unique thermal, mechanic and electromagnetic properties. In this work, dielectric properties of phosphate ceramics with round silver nanoparticles of various sizes were studied in the wide frequency range of 20 Hz-40 GHz for microwave shielding applications. The percolation threshold in ceramics is close to 30 wt.

View Article and Find Full Text PDF

We report on experimental and theoretical studies of widely tunable high-efficiency subnanosecond optical parametric generator (OPG) and amplifier (OPA) based on a 2 cm long multigrating MgO-doped periodically-poled lithium niobate (MgO:PPLN) crystal pumped by a passively Q-switched Nd:YAG micro-laser. Our OPG can be continuously tuned from 1442 nm to 4040 nm with signal wave energies ranging from 33 J to 265 J and total OPG conversion efficiency up to 46 % that depended on the pump focusing conditions. Characterization of spatial properties of the OPG determine Lorentzian spatial profile of the signal beam with ≈2 that was also dependent on the pump focusing conditions.

View Article and Find Full Text PDF

Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20-40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.

View Article and Find Full Text PDF

The H-C cross-polarization (CP) kinetics in poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) was studied under moderate (10 kHz) magic-angle spinning (MAS). To elucidate the role of adsorbed water in spin diffusion and proton conductivity, PMETAC was degassed under vacuum. The CP MAS results were processed by applying the anisotropic Naito and McDowell spin dynamics model, which includes the complete scheme of the rotating frame spin-lattice relaxation pathways.

View Article and Find Full Text PDF

High permittivity materials for a gigahertz (GHz) communication technology have been actively sought for some time. Unfortunately, in most materials, the dielectric constant starts to drop as frequencies increase through the megahertz (MHz) range. In this work, we report a large dielectric constant of ∼800 observed in defect-mediated rutile SnO ceramics, which is nearly frequency and temperature independent over the frequency range of 1 mHz to 35 GHz and temperature range of 50-450 K.

View Article and Find Full Text PDF

Polymer composites containing carbon nanofillers are extensively developed for electromagnetic shielding applications, where lightweight and flexible materials are required. One example of the microwave absorbers can be thermoplastic fibers fabricated from copolyamide hot melt adhesives and 7 wt% of multi-walled carbon nanotubes, as presented in this paper. A broadband dielectric spectroscopy confirmed that the addition of carbon nanotubes significantly increased microwave electrical properties of the thin (diameter about 100 μm) thermoplastic fibers.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created composite materials with high levels of a specific ferroelectric compound (0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3) mixed into phosphate-bonded ceramics under varying pressures.
  • All samples displayed a consistent distribution of the active ferroelectric phase and maintained thermal stability up to 900 K.
  • The study found that the density of these composites varies in a non-linear way with pressure, with increased density leading to higher dielectric permittivity and strong piezoelectric properties.
View Article and Find Full Text PDF

The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion.

View Article and Find Full Text PDF
Article Synopsis
  • Polymer matrix composites filled with carbon nanoparticles, such as onion-like carbon (OLC), have varying electrical properties influenced by the size and distribution of the particles in the epoxy resin matrix.
  • The study examines the electrical resistivity and voltage fluctuations in these composites at temperatures from 78 to 380 K, highlighting different electrical transport mechanisms that occur at varying temperatures.
  • Results show that smaller particles (40 nm) lead to quasi one-dimensional electrical transport, while larger particles (220-250 nm) exhibit higher dimensionality; additionally, the conductivity of smaller particle composites is more affected by thermal expansion of the matrix.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined the dielectric and electric properties of epoxy composites containing carbon-coated nickel (Ni@C) and multi-walled carbon nanotubes (MWCNTs) across various temperatures and frequencies.
  • Key findings revealed that the electrical percolation threshold for Ni@C alone was between 10-15 vol.%, making it suitable for electromagnetic shielding applications above this threshold.
  • The research also discovered that a specific concentration of Ni@C (0.2 vol.%) in hybrid composites significantly enhanced conductivity compared to MWCNT-only composites, with electrical transport mechanisms varying with temperature and composite type.
View Article and Find Full Text PDF

The composite material filled with nano-sized BaTiO3 and Fe3O4 was designed and studied. The aluminium phosphate ceramics was used as a matrix. The XRD analysis demonstrates only the crystalline structure of the fillers used.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to this paper has been released.
  • The amendment can be accessed through the original article.
  • Readers are encouraged to check the original publication for the updates.
View Article and Find Full Text PDF