Publications by authors named "Banyai I"

Core-shell tecto dendrimers (CSTDs) with excellent physicochemical properties and good tumor penetration and gene transfection efficiency have been demonstrated to have the potential to replace high-generation dendrimers in biomedical applications. However, their characterization and related biological properties of CSTDs for enhanced tumor penetration and gene delivery still lack in-depth investigation. Herein, three types of dual-responsive CSTDs are designed for thorough physicochemical characterization and investigation of their tumor penetration and gene delivery efficiency.

View Article and Find Full Text PDF

Thermal convection is always present when the temperature of an NMR experiment is different from the ambient one. Most often, it falsifies the value of the diffusion coefficient determined by NMR diffusiometry using a PGSE NMR experiment. In spite of common belief, it acts not only at higher temperatures but also at temperatures lower than in the laboratory.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has received increasing attention due to its unique tumor microenvironment (TME) responsiveness and minimal adverse side effects, but the therapeutic effect of CDT alone is always limited due to the low Fenton or Fenton-like reaction efficiency at tumor sites. Herein, Fe-doped layered double hydroxide (LDH) nanosheets were synthesized to load the anticancer drug epigallocatechin-3--gallate (EGCG) and then conjugated with boronic acid-modified hyaluronic acid for targeted and cooperative chemo-chemodynamic therapy of tumors. The formed LDH-EGCG-HA nanoplatforms could specifically target tumor cells overexpressing CD44 receptors, quickly release iron ions and EGCG in the TME, and efficiently generate toxic hydroxyl radicals with the acceleration of Fe/Fe cycling in the Fenton reaction by EGCG.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies suggest that Auger electron emitters, like antimony(III) complexes, could be effective in cancer radiotherapy with minimal side effects.
  • The research focuses on the coordination chemistry of the complex [Sb(PCTA)], which shows high thermodynamic stability, indicating it can remain intact in physiological conditions.
  • The stable structure and formation of [Sb(PCTA)] have been confirmed through various spectroscopic methods, indicating its potential as a targeted treatment option using radiotherapy.
View Article and Find Full Text PDF

The thermodynamic, kinetic, and structural properties of Ln complexes with the bifunctional DO3A-ACE ligand and its amide derivative DO3A-BACE (modelling the case where DO3A-ACE ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg and Ca complexes of DO3A-ACE and DO3A-BACE complexes are lower than for DOTA and DO3A, while the Zn and Cu complexes have similar and higher stability than for DOTA and DO3A complexes. The stability constants of the Ln(DO3A-BACE) complexes increase from Ce to Gd but remain practically constant for the late Ln ions (represented by Yb).

View Article and Find Full Text PDF

Zwitterions are a class of unique molecules that can be modified onto nanomaterials to render them with antifouling properties. Here we report a thorough NMR investigation of dendrimers modified with zwitterions in terms of their structure, hydrodynamic size, and diffusion time in aqueous solution. In this present work, poly(amidoamine) (PAMAM) dendrimers of generation 5 (G5) were partially decorated with carboxybetaine acrylamide (CBAA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and 1,3-propane sultone (1,3-PS), respectively with different modification degrees.

View Article and Find Full Text PDF

Silica-gelatin hybrid aerogels of varying gelatin content (from 4 wt.% to 24 wt.%) can be conveniently impregnated with hydrophobic active agents (e.

View Article and Find Full Text PDF

We have prepared the indium(III)-centered, all-acetate-capped polyoxopalladate(II) nanocube [InPdO(OAc)] (), which can be further used as precursor to form the phosphate-capped (i) double-cube [InPdO(OH)(PO)(POOH)] () and (ii) monocube [InPdO(PO)] (). All three novel polyoxopalladates (POPs) were synthesized using conventional one-pot techniques in aqueous solution and characterized in the solid state (single-crystal XRD, IR, elemental analysis), in solution (In, P, and C NMR), and in the gas phase (ESI-MS).

View Article and Find Full Text PDF

Design of powerful nanosystems to overcome multidrug resistance (MDR) for effective chemotherapy of cancer currently remains a great challenge. Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer/carbon dot nanohybrid for dual drug loading to overcome MDR and simultaneously monitor cancer cells via fluorescence imaging. First, blue-emitting carbon dots (CDs) were synthesized using sodium citrate as a carbon source via the hydrothermal method and used as a carrier to load the anticancer drug doxorubicin (DOX) through non-covalent interactions, thus forming CDs/DOX complexes.

View Article and Find Full Text PDF

Here we report on the synthesis and structural characterization of the dithallium(III)-containing 30-tungsto -4-phosphate [TlNa(HO){PWO}] (1) by a multitude of solid-state and solution techniques. Polyanion 1 comprises two octahedrally coordinated Tl ions sandwiched between two trilacunary {PW} Wells-Dawson fragments and represents only the second structurally characterized, discrete thallium-containing polyoxometalate to date. The two outer positions of the central rhombus are occupied by sodium ions.

View Article and Find Full Text PDF

We report the construction and characterization of Tc-labeled arginine-glycine-aspartic acid (RGD)-polyethylenimine (PEI) conjugates with entrapped gold nanoparticles in the cavities (RGD-Tc-Au PENPs) for dual-mode single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of an orthotopic hepatic carcinoma model. In this study, PEI was successively decorated with diethylenetriaminepentaacetic acid, poly(ethylene glycol) (PEG), and PEGylated RGD segments, and was utilized as an effective nanoplatform to entrap Au NPs and to be labeled with Tc. We showed that the designed RGD-Tc-Au PENPs displayed desirable colloidal stability and radiostability, and cytocompatibility in the investigated concentration range, and could be specifically uptaken by αβ integrin-overexpressing liver cancer cells in vitro.

View Article and Find Full Text PDF

Dendrimers are extensively studied for drug delivery and catalysis, most of which are pH dependent. Phosphate buffer solutions (PBSs) are often used to adjust the pH. We have found that phosphate ions become incorporated into poly(amidoamine) (PAMAM) dendrimer molecules by forming H-bonds with tertiary nitrogens.

View Article and Find Full Text PDF

Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar.

View Article and Find Full Text PDF

NMR spectroscopy has been proven to be a useful method to characterize the spatial structure of polymer-protected nanoparticles (NPs). In the present study, polyethylenimine (PEI) partially modified with polyethylene glycol (PEG) was used as a template to form gold NPs (Au NPs) via either sodium borohydride reduction or PEI amine-mediated self-reduction of Au salt. The formed two types of PEGylated PEI-entrapped Au NPs (PEI-mPEG-Au NPs) were characterized by UV-vis spectroscopy and transmission electron microscopy, and their internal structures were characterized using NMR techniques.

View Article and Find Full Text PDF

The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively.

View Article and Find Full Text PDF

(17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path.

View Article and Find Full Text PDF

High resolution NMR spectroscopy, NMR diffusiometry, and NMR cryoporometry have been used to investigate aqueous solution (D2O) of PAMAM_G5.NH2-(Au)(25-100) and PAMAM_G5.NH2-(H2O)1000-(H2O)4000 systems.

View Article and Find Full Text PDF

Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines.

View Article and Find Full Text PDF

Generation 5 (G5) poly(amidoamine) dendrimers with acetyl (G5.NHAc), glycidol hydroxyl (G5.NGlyOH), and succinamic acid (G5.

View Article and Find Full Text PDF

The in vitro autoxidation of N-hydroxyurea (HU) is catalyzed by Mn(III)TTEG-2-PyP(5+), a synthetic water soluble Mn(III) porphyrin which is also a potent mimic of the enzyme superoxide dismutase. The detailed mechanism of the reaction is deduced from kinetic studies under basic conditions mostly based on data measured at pH = 11.7 but also including some pH-dependent observations in the pH range 9-13.

View Article and Find Full Text PDF

We report the fabrication of water-stable electrospun γ-polyglutamic acid (γ-PGA) nanofibers with morphology control for biomedical applications. In this study, the processing variables including polymer concentration, flow rate, applied voltage, collection distance, and ambient humidity were systematically optimized to generate uniform γ-PGA nanofibers with a smooth morphology. By changing the trifluoroacetic acid concentration in the electrospinning solution, the diameter of the γ-PGA nanofibers can be controlled within the range of 186-603 nm.

View Article and Find Full Text PDF

The activation parameters and the rate constants of the water-exchange reactions of Mn(III)TE-2-PyP(5+) (meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin) as cationic, Mn(III)TnHex-2-PyP(5+) (meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin) as sterically shielded cationic, and Mn(III)TSPP(3-) (meso-tetrakis(4-sulfonatophenyl)porphyrin) as anionic manganese(iii) porphyrins were determined from the temperature dependence of (17)O NMR relaxation rates. The rate constants at 298 K were obtained as 4.12 x 10(6) s(-1), 5.

View Article and Find Full Text PDF

The conformational properties of lanthanide(III) complexes with the mono- and biphosphonate analogues of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) are investigated by means of density functional theory (DFT) calculations and NMR spectroscopy. Geometry optimizations performed at the B3LYP/6-31G(d) level and using a 46 + 4f(n) effective core potential for lanthanides provide two energy minima corresponding to the square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) geometries. Our calculations give relative free energies between the SAP and TSAP isomers in fairly good agreement with the experimental values.

View Article and Find Full Text PDF

The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated.

View Article and Find Full Text PDF