Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants.
View Article and Find Full Text PDFBackground: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear.
Results: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield.
Introduction: Low selenium (Se) concentrations in soils and plants pose a health risk for ruminants consuming locally-grown forages. Previous studies have shown that Se concentrations in forages can be increased using soil-applied selenate amendments. However, the effects of foliar selenate amendments applied with traditional nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizers on forage yields, and nutrient contents, and agronomic efficiencies are unknown.
View Article and Find Full Text PDFSince soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (HS), etc., which will aggravate global warming, degrade air quality and even threaten human health.
View Article and Find Full Text PDFSelenium (Se) agronomic biofortification of plants is effective for alleviating Se deficiencies in human and livestock populations. Less is known about how higher selenate amendment rates, or how foliar compared with granular selenate amendments affect forage Se concentrations. Therefore, we compared the effects of a higher sodium selenate foliar amendment rate (900 vs.
View Article and Find Full Text PDFIn California, there is a shortage of good quality water available for irrigated agriculture due to severe drought. Consequently, saline groundwaters and drainage waters containing natural-occurring selenium (Se) and boron (B) salts are being considered as alternative sources of water for irrigation on salt and B tolerant crops like the edible halophyte-agretti (Salsola soda L.).
View Article and Find Full Text PDFA comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments.
View Article and Find Full Text PDFMelatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations.
View Article and Find Full Text PDFArsenic (As) is a pollutant with a strong toxic effect on animals, plants and human beings. Exogenous selenium (Se) has been suggested to reduce the accumulation of As in crops, but contradictory results were found in the published literature. In order to clarify the possible processes, we collected the literature that reports on the effects of Se application on As uptake and accumulation in crops, analyzed the data by meta-analysis, and tested the effects of different factors on As accumulation by meta-regression model and subgroup analysis.
View Article and Find Full Text PDFUsing microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application.
View Article and Find Full Text PDFConstructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.
View Article and Find Full Text PDFChlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2021
Nitrogen removal in constructed wetlands (CWs) may be inhibited by salinity. The clarification of the response of microbial community to salt stress is a premise for developing strategies to improve nitrogen removal efficiency in CWs under saline conditions. Results showed that the ammonia nitrogen (NH-N), nitrate nitrogen (NO-N), and total nitrogen (TN) removal percentages significantly (p < 0.
View Article and Find Full Text PDFSelenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg, respectively).
View Article and Find Full Text PDFConstructed wetlands integrated with microbial fuel cells (MFC-CWs) have been recently developed and tested for removing antibiotics. However, the effects of carbon source availability, electron transfer flux and cathode conditions on antibiotics removal in MFC-CWs through co-metabolism remained unclear. In this study, four experiments were conducted in MFC-CW microcosms to investigate the influence of carbon source species and concentrations, external resistance and aeration duration on sulfamethoxazole (SMX) and tetracycline (TC) removal and bioelectricity generation performance.
View Article and Find Full Text PDFMaritime Antarctica harbors a large number of penguins and seals that provide considerable input of selenium (Se) originating as guano into terrestrial ecosystems. Subsequent Se emissions via biomethylation and volatilization from these sources of Se have not been studied. Here, penguin colony soils (PCS) and adjacent tundra marsh soils (TMS), seal colony soils (SCS) and adjacent tundra soils (STS), and normal upland tundra soils (NTS) were collected in maritime Antarctica.
View Article and Find Full Text PDFIn 1963, selenosis occurred in Yutangba Village, Enshi City, China. Subsequently, local residents migrated to a new area of Yutangba to avoid high selenium (Se) exposure. In this study, 19 soil samples, 43 food samples, 60 hair samples and 58 plasma samples from local residents were randomly collected in New Yutangba Village.
View Article and Find Full Text PDFThe inhibition of salt stress on plant and microbial functions has led to the reduction of nitrogen removal capacity of constructed wetlands (CWs) under saline conditions. The mechanisms and effectiveness of bioaugmented CW (Bio-CW) microcosms with a salt-tolerant microbial inoculum were evaluated for nitrogen removal at different salinity levels. The results showed that the denitrification capacity of CWs was improved under saline conditions by adding the salt-tolerant microbial inoculum.
View Article and Find Full Text PDFThe RNA chaperone, Hfq, is a global post-transcriptional regulator that plays an important role in regulating pleiotropic functions, such as cell growth and motility, stress tolerance, and virulence to host, in many Gram-negative bacteria. This study examined the functional roles of Hfq in Rahnella aquatilis HX2, a plant beneficial, selenium nanoparticles (SeNPs)-producing soil bacterium. A mutant HX2∆hfq with an in-frame deletion within the hfq gene in R.
View Article and Find Full Text PDFSelenium (Se) biofortification, as an agronomic-based strategy, is utilized to produce Se-enriched food products for increasing Se intake in inhabitants in Se-deficient regions. This strategy can be accomplished by soil and foliar application of Se or by growing crops in soils naturally high in Se. In this study, different cruciferous vegetables were field-grown in high boron (B) and saline soils of central California containing naturally high levels of Se.
View Article and Find Full Text PDF