Publications by authors named "Bansil R"

The optimization and detailed characterization of gastrointestinal organoid models require advanced methods for analyzing their luminal environments. This paper presents a highly reproducible method for the precise measurement of pH within the lumina of 3D human gastric organoids via micromanipulator-controlled microelectrodes. The pH microelectrodes are commercially available and consist of beveled glass tips of 25 µm in diameter.

View Article and Find Full Text PDF

The gastric pathogen, bacteria have to swim across a pH gradient from 2 to 7 in the mucus layer to colonize the gastric epithelium. Previous studies from our group have shown that porcine gastric mucin (PGM) gels at an acidic pH < 4, and bacteria are unable to swim in the gel, although their flagella rotate. Changing pH impacts both the rheological properties of gastric mucin and also influences the proton (H+)-pumped flagellar motors of as well as their anti-pH sensing receptors.

View Article and Find Full Text PDF

spp., including the well-known human gastric pathogen , can cause gastric diseases in humans and other mammals. They are Gram-negative bacteria that colonize the gastric epithelium and use their multiple flagella to move across the protective gastric mucus layer.

View Article and Find Full Text PDF

Mpox (formally monkeypox) is an Orthopoxvirus associated with both zoonotic and person-to-person spread. Human mpox classically presents with rash and systemic symptoms. Although sporadic outbreaks of mpox have occurred worldwide, the 2022 outbreak is the first of pandemic significance.

View Article and Find Full Text PDF

The swimming strategies of unipolar flagellated bacteria are well known but little is known about how bipolar bacteria swim. Here we examine the motility of Helicobacter suis, a bipolar gastric-ulcer-causing bacterium that infects pigs and humans. Phase-contrast microscopy of unlabeled bacteria reveals flagella bundles in two conformations, extended away from the body (E) or flipped backwards and wrapped (W) around the body.

View Article and Find Full Text PDF

We present particle tracking microrheology results on human mucins, isolated from normal surface and gland mucosa and one tumor sample, and examine the motility of Helicobacter pylori in these mucins. At 1.5% concentration human mucin solutions are purely viscous, with viscosity η (gland mucin) > η (surface mucin) > η (tumor mucin).

View Article and Find Full Text PDF

In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that lines the epithelial surfaces of all organs exposed to the external world. Mucus is a complex aqueous fluid that owes its viscoelastic, lubricating and hydration properties to the glycoprotein mucin combined with electrolytes, lipids and other smaller proteins. Electron microscopy of mucosal surfaces reveals a highly convoluted surface with a network of fibers and pores of varying sizes.

View Article and Find Full Text PDF

Background: Metastasis of one cancer to another is rare. Here, we report a spinal meningioma that was infiltrated by metastatic deposits from another cancer.

Case Description: A 62-year-old male presented with a progressive spastic paraparesis.

View Article and Find Full Text PDF

It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped rotated as they swam, producing a helical trajectory.

View Article and Find Full Text PDF

Background: Another rare cause of lower back pain with radiculopathy is the discal cyst. It is believed to arise from degeneration of a herniated disc, although many other theories of its origin have been proposed. Here, we report a patient with lower back pain/radiculopathy attributed originally to a herniated lumbar disc, which transformed within 6 months into a discal cyst.

View Article and Find Full Text PDF

The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media.

View Article and Find Full Text PDF

The bacterium Helicobacter pylori (H. pylori), has evolved to survive in the highly acidic environment of the stomach and colonize on the epithelial surface of the gastric mucosa. Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer.

View Article and Find Full Text PDF

Recently, Farjas and Roura (FR) have proposed a universal scaling law to describe crystallization kinetics based on a modification of the conventionally used Avrami model. In this letter, we apply the approach of Farjas and Roura to analyze the kinetics of an order-order phase transition in a diblock copolymer solution. We present an analysis of kinetics of the hexagonally packed cylinders (HEX) to gyroid transformation in polystyrene--polyisoprene (SI) diblock copolymer solutions in dimethyl phthalate using time-resolved small-angle X-ray scattering (SAXS) measurements.

View Article and Find Full Text PDF

Mucin glycoproteins consist of tandem-repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin and play an important role in the pH-dependent gelation of gastric mucin, which is essential for protecting the stomach from autodigestion. We examine folding of the non-repetitive sequence of PGM-2X (242 amino acids) and the von Willebrand factor vWF-C1 domain (67 amino acids) at neutral and low pH using discrete molecular dynamics (DMD) in an implicit solvent combined with a four-bead peptide model.

View Article and Find Full Text PDF

The kinetics of the transformation from the hexagonal packed cylinder (hex) phase to the face-centered-cubic (fcc) phase was simulated using Brownian dynamics for an ABA triblock copolymer in a selective solvent for the A block. The kinetics was obtained by instantaneously changing either the temperature of the system or the well-depth of the Lennard-Jones potential. Detailed analysis showed that the transformation occurred via a rippling mechanism.

View Article and Find Full Text PDF

The ulcer-causing gastric pathogen Helicobacter pylori is the only bacterium known to colonize the harsh acidic environment of the human stomach. H. pylori survives in acidic conditions by producing urease, which catalyzes hydrolysis of urea to yield ammonia thus elevating the pH of its environment.

View Article and Find Full Text PDF

Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.

View Article and Find Full Text PDF

We have developed a novel optical method for observing submicrometer intracellular structures in living cells, which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light-scattering spectroscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales of the order of 100 nm.

View Article and Find Full Text PDF

Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.

View Article and Find Full Text PDF

We have used small-angle light-scattering (SALS), microscopy, and measurements to study structural changes produced in unbuffered agarose gels as ions migrate under applied electric fields (3-20 V/cm). Anisotropic, bowtielike, light-scattering patterns were observed, whose development occurred more quickly at higher fields. The horizontal lobes were more pronounced at higher polymer concentration.

View Article and Find Full Text PDF

Mammalian gastric mucin, at high concentration, is known to form a gel at low pH, behavior essential to the protection of the stomach from auto-digestion. Atomic force microscopy (AFM) measurements of dilute solutions of porcine gastric mucin in an aqueous environment in the pH range 6-2 provide a direct visualization of extended fiberlike molecules at pH 6 that aggregate at pH 4 and below forming well-defined clusters at pH 2. The clusters consist of 10 or less molecules.

View Article and Find Full Text PDF

Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data provide a measurement of the microscale viscosity and the shear elastic modulus as well as an estimate of the mesh size of the gel formed at pH 2.

View Article and Find Full Text PDF

We utilized fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to examine the role of gallbladder mucin (GBM) in promoting the aggregation and/or fusion of cholesterol enriched vesicles. By fluorescent labeling either the vesicle or the mucin, we could examine the change in vesicle size as well as changes in mucin's diffusion constant. Both FRAP and FCS show that GBM has a profound effect in inducing vesicles to aggregate/fuse, particularly after overnight incubation.

View Article and Find Full Text PDF

We present synchrotron-based time-resolved small-angle x-ray scattering (SAXS) measurements of spinodal decomposition in a covalently cross-linked N-isopropylacrylamide gel. The range of wave numbers examined is well beyond the position of the maximum in the structure factor S(q,t). The equilibrium structure factor is described by the sum of a Lorentzian and a Gaussian.

View Article and Find Full Text PDF