Publications by authors named "Banroques J"

The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of TCTP (translationally controlled tumor protein) in regulating oncogenic intercellular signaling through extracellular vesicles (EVs), particularly in response to genotoxic stress.
  • - Researchers used a Tctp-inducible knockout mouse model and found that TCTP is crucial for triggering apoptosis signaling and promoting malignant growth via small EVs (sEVs).
  • - The findings suggest that TCTP enhances tumor development by binding to DDX3 and recruiting RNAs, including miRNAs, to sEVs, and inhibiting TCTP can improve survival rates in tumor-prone mice.
View Article and Find Full Text PDF

DEAD-box RNA helicases are ATP-dependent RNA binding proteins and RNA-dependent ATPases that possess weak, nonprocessive unwinding activity in vitro, but they can form long-lived complexes on RNAs when the ATPase activity is inhibited. Ded1 is a yeast DEAD-box protein, the functional ortholog of mammalian DDX3, that is considered important for the scanning efficiency of the 48S pre-initiation complex ribosomes to the AUG start codon. We used a modified PAR-CLIP technique, which we call quicktime PAR-CLIP (qtPAR-CLIP), to crosslink Ded1 to 4-thiouridine-incorporated RNAs in vivo using UV light centered at 365 nm.

View Article and Find Full Text PDF

Previous investigations of the eIF4A-like protein (LieIF4A) as a potential drug target delivered cholestanol derivatives inhibitors. Here, we investigated the mode of action of cholesterol derivatives as a novel scaffold structure of LieIF4A inhibitors on the RNA-dependent ATPase activity of LieIF4A and its mammalian ortholog (eIF4AI). We compared their biochemical effects on RNA-dependent ATPase activities of both proteins and investigated if rocaglamide, a known inhibitor of eIF4A, could affect LieIF4A as well.

View Article and Find Full Text PDF

DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation.

View Article and Find Full Text PDF

RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction.

View Article and Find Full Text PDF
Article Synopsis
  • DEAD-box helicases are crucial for RNA metabolism and work as ATP-dependent proteins that can displace RNA duplexes but lack processivity, making their exact functioning unclear.
  • A new single-molecule assay using magnetic tweezers allows for sensitive measurement of RNA displacement times to better understand helicase activity, with the ability to analyze multiple molecules simultaneously.
  • Research on the yeast helicase Ded1 demonstrates that it requires RNA substrates and ATP hydrolysis for unwinding activity, suggesting that ATP-bound Ded1 stabilizes partially unwound RNA duplexes and may need multiple binding events for effective displacement.
View Article and Find Full Text PDF

The antifungal agent 6-aminocholestanol targets the production of ergosterol, which is the principle sterol in many fungi and protozoans; ergosterol serves many of the same roles as cholesterol in animals. We found that it also is an effective inhibitor of the translation-initiation factor eIF4AI from mouse (eIF4AI) and the Trypanosomatid parasite Leishmania (LieIF4A). The eIF4A proteins belong to the DEAD-box family of RNA helicases, which are ATP-dependent RNA-binding proteins and RNA-dependent ATPases.

View Article and Find Full Text PDF

Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target.

View Article and Find Full Text PDF

DEAD-box RNA helicases have core structures consisting of two, tandemly linked, RecA-like domains that contain all of the conserved motifs involved in binding ATP and RNA, and that are needed for the enzymatic activities. The conserved sequence motifs and structural homology indicate that these proteins share common origins and underlining functionality. Indeed, the purified proteins generally act as ATP-dependent RNA-binding proteins and RNA-dependent ATPases in vitro, but for the most part without the substrate specificity or enzymatic regulation that exists in the cell.

View Article and Find Full Text PDF

The DEAD-box helicase Ded1 is an essential yeast protein that is closely related to mammalian DDX3 and to other DEAD-box proteins involved in developmental and cell cycle regulation. Ded1 is considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We used IgG pull-down experiments, mass spectrometry analyses, genetic experiments, sucrose gradients, in situ localizations and enzymatic assays to show that Ded1 is a cap-associated protein that actively shuttles between the cytoplasm and the nucleus.

View Article and Find Full Text PDF

Previously we showed that His-tagged, recombinant, Leishmania infantum eukaryotic initiation factor (LeIF) was both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described for other members of the DEAD-box helicase family. In addition, we showed that LeIF induces the production of IL-12, IL-10, and TNF-α by human monocytes. This study aims to characterize the cytokine-inducing activity in human monocytes of several proteins belonging to the DEAD-box family from mammals and yeast.

View Article and Find Full Text PDF

The DEAD-box family of putative RNA helicases is composed of ubiquitous proteins that are found in nearly all organisms and that are involved in virtually all processes involving RNA. They are characterized by two tandemly linked, RecA-like domains that contain 11 conserved motifs and highly variable amino- and carboxy-terminal flanking sequences. For this reason, they are often considered to be modular multi-domain proteins.

View Article and Find Full Text PDF

Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes.

View Article and Find Full Text PDF

We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability.

View Article and Find Full Text PDF

LeIF, a Leishmania protein similar to the eukaryotic initiation factor eIF4A, which is a prototype of the DEAD box protein family, was originally described as a Th1-type natural adjuvant and as an antigen that induces an IL12-mediated Th1 response in the peripheral blood mononuclear cells of leishmaniasis patients. This study aims to characterize this protein by comparative biochemical and genetic analysis with eIF4A in order to assess its potential as a target for drug development. We show that a His-tagged, recombinant, LeIF protein of Leishmania infantum, which was purified from Escherichia coli, is both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described previously for other members of the DEAD box helicase protein family.

View Article and Find Full Text PDF

RNA helicases of the DEAD-box protein family have been shown to participate in every aspect of RNA metabolism. They are present in most organisms where they work as RNA helicases or RNPases. The properties of these enzymes in vivo remains poorly described, however some were extensively characterized in vitro, and the solved crystal structures of a few are now available.

View Article and Find Full Text PDF

DEAD-box proteins are the most common RNA helicases, and they are associated with virtually all processes involving RNA. They have nine conserved motifs that are required for ATP and RNA binding, and for linking phosphoanhydride cleavage of ATP with helicase activity. The Q motif is the most recently identified conserved element, and it occurs approximately 17 amino acids upstream of motif I.

View Article and Find Full Text PDF

SF1 and SF2 helicases have structurally conserved cores containing seven to eight distinctive motifs and variable amino- and carboxyl-terminal flanking sequences. We have discovered a motif upstream of motif I that is unique to and characteristic of the DEAD box family of RNA helicases. It consists of a 9 amino acid sequence containing an invariant glutamine.

View Article and Find Full Text PDF

In eukaryotic cells, all aspects of cellular RNA metabolism require putative RNA helicases of the DEAD and DExH protein families (collectively known as DExD/H families). Based on data from biochemical studies of a few of these RNA helicases, they are generally considered to be involved in the unwinding of duplex RNA molecules. However, recent reports provide evidence indicating that these proteins might also be involved in the active disruption of RNA-protein interactions.

View Article and Find Full Text PDF

The 25S [U4/U6.U5] tri-snRNP (small nuclear ribonucleoprotein) is a central unit of the nuclear pre-mRNA splicing machinery. The U4, U5 and U6 snRNAs undergo numerous rearrangements in the spliceosome, and knowledge of all of the tri-snRNP proteins is crucial to the detailed investigation of the RNA dynamics during the spliceosomal cycle.

View Article and Find Full Text PDF

Nuclear pre-mRNA splicing occurs in a large RNA-protein complex containing four small nuclear ribonucleoprotein particles (snRNPs) and additional protein factors. The yeast Prp4 (yPrp4) protein is a specific component of the U4/U6 and U4/U6-U5 snRNPs, which associates transiently with the spliceosome before the first step of splicing. In this work, we used the in vivo yeast two-hybrid system and in vitro immunoprecipitation assays to show that yPrp4 interacts with yPrp3, another U4/U6 snRNP protein.

View Article and Find Full Text PDF

The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y.

View Article and Find Full Text PDF

We showed previously that the yeast Prp4 protein is a spliceosomal factor that is tightly associated with the U4, U5, and U6 small nuclear RNAs. Moreover, Prp4 appears to associate very transiently with the spliceosome before the U4 snRNA dissociates from the spliceosome. Prp4 belongs to the Gbeta-like protein family, which suggests that the Prp4 Gbeta motifs could mediate interactions with other components of the spliceosome.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae U3 snoRNA genes contain long spliceosomal introns with noncanonical branch site sequences. By using chemical and enzymatic methods to probe the RNA secondary structure and site-directed mutagenesis, we established the complete secondary structure of the U3A snoRNA precursor. This is the first determination of the complete secondary structure of an RNA spliced in a spliceosome.

View Article and Find Full Text PDF