Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics.
View Article and Find Full Text PDFLayer-by-layer (LbL) self-assembled polyelectrolyte multilayer (PEM) films are a simple yet elegant bottom-up technology to create films at the nano-microscale. This low-cost technology has been widely used as a universal functionalization technique on a broad spectrum of substrates. Biomolecules under investigation can be incubated onto films based on complementary charge interactions between the films and biomolecules.
View Article and Find Full Text PDFIn recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection.
View Article and Find Full Text PDFInterfaces between metals and semiconducting materials can inevitably influence the magnetotransport properties, which are crucial for technological applications ranging from magnetic sensing to storage devices. By taking advantage of this, a metallic graphene foam is integrated with semiconducting copper-based metal sulfide nanocrystals, i.e.
View Article and Find Full Text PDFMicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155.
View Article and Find Full Text PDFThe presence of a direct band gap and high carrier mobility in few-layer black phosphorus (BP) offers opportunities for using this material for infrared (IR) light detection. However, the poor air stability of BP and its large contact resistance with metals pose significant challenges to the fabrication of highly efficient IR photodetectors with long lifetimes. In this work, we demonstrate a graphene-BP heterostructure photodetector with ultrahigh responsivity and long-term stability at IR wavelengths.
View Article and Find Full Text PDFThe integration of graphene with colloidal quantum dots (QDs) that have tunable light absorption affords new opportunities for optoelectronic applications as such a hybrid system solves the problem of both quantity and mobility of photocarriers. In this work, a hybrid system comprising of monolayer graphene and self-doped colloidal copper phosphide (Cu P) QDs is developed for efficient broadband photodetection. Unlike conventional PbS QDs that are toxic, Cu P QDs are environmental friendly and have plasmonic resonant absorption in near-infrared (NIR) wavelength.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method.
View Article and Find Full Text PDFWe used scattering-type scanning near-field optical microscopy (s-SNOM) to investigate the plasmonic properties of edges in well-defined graphene nanostructures, including sharp tapers, nanoribbons and nanogaps, which were all fabricated via the growth-etching chemical vapor deposition (GECVD) method. The obtained near-field images revealed the localized plasmon modes along the graphene nanoribbon; these modes strongly depended on the size of the graphene pattern, the angle of the tapered graphene and the infrared excitation wavelength. These interesting plasmon modes were verified by numerical simulations and explained by the reflection, and interference of electromagnetic waves at the graphene-SiO edge.
View Article and Find Full Text PDF