Mixed Sn-Pb halide perovskites are promising absorber materials for solar cells due to the possibility of tuning the bandgap energy down to 1.2-1.3 eV.
View Article and Find Full Text PDFThis paper studies the structural and optical properties of tantalum-iron-, tantalum-cobalt-, and tantalum-nickel-sputtered thin films both ex situ and while being exposed to various hydrogen pressures/concentrations, with a focus on optical hydrogen sensing applications. Optical hydrogen sensors require sensing materials that absorb hydrogen when exposed to a hydrogen-containing environment. In turn, the absorption of hydrogen causes a change in the optical properties that can be used to create a sensor.
View Article and Find Full Text PDFFull-area passivating contacts based on SiO/poly-Si stacks are key for the new generation of industrial silicon solar cells substituting the passivated emitter and rear cell (PERC) technology. Demonstrating a potential efficiency increase of 1 to 2% compared to PERC, the utilization of n-type wafers with an n-type contact at the back and a p-type diffused boron emitter has become the industry standard in 2024. In this work, variations of this technology are explored, considering p-type passivating contacts on p-type Si wafers formed via a rapid thermal processing (RTP) step.
View Article and Find Full Text PDFFormation cycling is a critical process aimed at improving the performance of lithium ion (Li-ion) batteries during subsequent use. Achieving highly reversible Li-metal anodes, which would boost battery energy density, is a formidable challenge. Here, formation cycling and its impact on the subsequent cycling are largely unexplored.
View Article and Find Full Text PDFLimited Li resources, high cost, and safety risks of using organic electrolytes have stimulated a strong motivation to develop non-Li aqueous batteries. Aqueous Zn-ion storage (ZIS) devices offer low-cost and high-safety solutions. However, their practical applications are at the moment restricted by their short cycle life arising mainly from irreversible electrochemical side reactions and processes at the interfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
The crystal structure and phase behavior of bisamide gelators are investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and molecular modeling, aiming at a better understanding of bisamide gel systems. A homologous series of bisamide model compounds (BAs) was prepared with the (CH) spacer between the two amide groups, where varies from 5 to 10, and with two symmetric C17 alkyl tails. With increasing spacer length, the thermal properties show a clear odd-even effect, which was characterized using our newly developed analytical model DSC(T).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
J Phys Chem C Nanomater Interfaces
September 2022
The integration of passivating contacts based on a highly doped polycrystalline silicon (poly-Si) layer on top of a thin silicon oxide (SiO) layer has been identified as the next step to further increase the conversion efficiency of current mainstream crystalline silicon (c-Si) solar cells. However, the interrelation between the final properties of poly-Si/SiO contacts and their fabrication process has not yet been fully unraveled, which is mostly due to the challenge of characterizing thin-film stacks with features in the nanometric range. Here, we apply in situ X-ray reflectometry and diffraction to investigate the multiscale (1 Å-100 nm) structural evolution of poly-Si contacts during annealing up to 900 °C.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2022
Metal hydrides may play a paramount role in a future hydrogen economy. While most applications are based on nanostructured and confined materials, studies considering the structural response of these materials to hydrogen concentrate on bulk material. Here, using in- and out-of-plane X-ray diffraction and reflectometry, we study the fcc ↔ fct transition in Hf thin films, an optical hydrogen-sensing material.
View Article and Find Full Text PDFCatalyzing capping layers on metal hydrides are employed to enhance the hydrogenation kinetics of metal hydride-based systems such as hydrogen sensors. Here, we use a novel experimental method to study the hydrogenation kinetics of catalyzing capping layers composed of several alloys of Pd and Au as well as Pt, Ni, and Ru, all with and without an additional PTFE polymer protection layer and under the same set of experimental conditions. In particular, we employ a thin Ta film as an optical indicator to study the kinetics of the catalytic layers deposited on top of it and which allows one to determine the absolute hydrogenation rates.
View Article and Find Full Text PDFWe study the evolution of the low-temperature field-induced magnetic defects observed under an applied magnetic field in a series of frustrated amorphous ferromagnets (Fe[Formula: see text]Mn[Formula: see text])[Formula: see text]P[Formula: see text]B[Formula: see text]Al[Formula: see text] ("a-Fe[Formula: see text]Mn[Formula: see text]"). Combining small-angle neutron scattering and Monte Carlo simulations, we show that the morphology of these defects resemble that of quasi-bidimensional spin vortices. They are observed in the so-called "reentrant" spin-glass (RSG) phase, up to the critical concentration [Formula: see text] which separates the RSG and "true" spin glass (SG) within the low temperature part of the magnetic phase diagram of a-FeMn.
View Article and Find Full Text PDFThe lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior.
View Article and Find Full Text PDFThe reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at T_{C} to the helimagnetic state is of first order. Above T_{C}, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2π/ℓ, where ℓ is the pitch of the helix.
View Article and Find Full Text PDFHydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure.
View Article and Find Full Text PDF