Objective: Fluid shear stress is thought to be a regulator of endothelial cell behavior during angiogenesis. The link, however, requires an understanding of stress values at the capillary level in angiogenic microvascular networks. Critical questions remain.
View Article and Find Full Text PDFThe gap between and assays has inspired biomimetic model development. Tissue engineered models that attempt to mimic the complexity of microvascular networks have emerged as tools for investigating cell-cell and cell-environment interactions that may be not easily viewed . A key challenge in model development, however, is determining how to recreate the multi-cell/system functional complexity of a real network environment that integrates endothelial cells, smooth muscle cells, vascular pericytes, lymphatics, nerves, fluid flow, extracellular matrix, and inflammatory cells.
View Article and Find Full Text PDFStromal vascular fraction (SVF), isolated from adipose tissue, identifies as a rich cell source comprised of endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. SVF represents a promising therapeutic heterogonous cell source for growing new blood microvessels due to its rich niche of cells. However, the spatiotemporal dynamics of SVF within living tissues remain largely unknown.
View Article and Find Full Text PDF