The present study focuses on the intriguing enhancement in the mechanical properties of an epoxy-based composite structure resulting from the incorporation of in-house synthesized functionalized graphene nanosheets (f-GNSs) as nanofillers. The f-GNSs were obtained by anionic electrochemical intercalation and exfoliation with 2 M HSO, HClO, and HNO protic electrolytes. The structural properties of the as-synthesized GNSs were analyzed by XRD and Raman spectroscopy.
View Article and Find Full Text PDFAdv Colloid Interface Sci
February 2017
The environmental durability of polymer based composites has always been a critical concern over its short- and long-term performances. The degree of environmental degradation is supposed to have different mechanisms and kinetics at the polymer/reinforcement interfaces in comparison to the bulk polymer matrix. Differential degradation could possibly attribute a stressed state in the material, especially at the interfaces.
View Article and Find Full Text PDFThe interface between fibre and matrix of fibrous polymeric composites is most critical and decisive in maintaining sustainability, durability and also reliability of this potential material, but unfortunately a comprehensive conclusion is yet to meet the label of confidence for the engineering viability. Fiber reinforced polymer (FRP) composites are being accepted and also utilized as better and reliable alternative materials for repairing and/or replacing conventional materials, starting from tiny objects to mega structure in various engineering applications. The promise and potential of these materials are sometimes threatened in speedy replacement of conventional materials because of their inhomogeneities and inherent susceptibility to degradation due to moist and thermal environments.
View Article and Find Full Text PDFFibre reinforced polymer (FRP) composites are the most promising and elegant material of the present century. Their durability and integrity in various service environments can be altered by the response of its constituent i.e.
View Article and Find Full Text PDFA laboratory study was conducted to investigate the ability of activated CO(2)-neutralized red mud (ANRM) for the removal of arsenate from the aqueous solutions. The batch adsorption experiments were conducted with respect to adsorbent dose, equilibrium pH, contact time, initial arsenate concentration, kinetics, Langmuir isotherms. The mechanisms involved in adsorption of arsenate ions on ANRM were characterized by using XRD, FT-IR, UV-vis, SEM/EDX, and chemical methods.
View Article and Find Full Text PDFA laboratory study was conducted to investigate the ability of neutralization of red mud (RM) using carbon dioxide gas sequestration cycle at ambient conditions. The neutralized red mud (NRM) was characterized by XRD, SEM, EDX, FT-IR and auto titration method. X-ray diffraction pattern of NRM was revealed that the intensity of gibbsite was increased prominently and formed ilmenite due to dissolution of minerals.
View Article and Find Full Text PDF