Publications by authors named "Bank U"

Objective: The COVID-19 pandemic has had significant health and socioeconomic impacts worldwide. Extensive measures, including contact restrictions, were implemented to control the spread of the virus. This study aims to examine the factors that influenced private and professional contact behaviour during the COVID-19 pandemic.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease with unknown etiology. Dextran sulfate sodium (DSS) induced colitis is a widely used mouse model in IBD research. DSS colitis involves activation of the submucosal immune system and can be used to study IBD-like disease characteristics in acute, chronic, remission and transition phases.

View Article and Find Full Text PDF

CD8 memory T cells (T ) are crucial for long-term protection from infections and cancer. Multiple cell types and cytokines are involved in the regulation of CD8 T cell responses and subsequent T formation. Besides their direct antiviral effects, type I interferons (IFN-I) modulate CD8 T cell immunity via their action on several immune cell subsets.

View Article and Find Full Text PDF

Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection.

View Article and Find Full Text PDF

NKp46 innate lymphoid cells (ILC) modulate tissue homeostasis and anti-microbial immune responses. ILC development and function are regulated by cytokines such as Interleukin (IL)-7 and IL-15. However, the ILC-intrinsic pathways translating cytokine signals into developmental programs are largely unknown.

View Article and Find Full Text PDF

The survival of peripheral T cells is dependent on their access to peripheral LNs (pLNs) and stimulation by IL-7. In pLNs fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) produce IL-7 suggesting their contribution to the IL-7-dependent survival of T cells. However, IL-7 production is detectable in multiple organs and is not restricted to pLNs.

View Article and Find Full Text PDF

Graft-vs.-host disease (GvHD) is a major complication of allogenic hematopoietic stem-cell(HSC) transplantation. GvHD is associated with loss of endothelial thrombomodulin, but the relevance of this for the adaptive immune response to transplanted HSCs remains unknown.

View Article and Find Full Text PDF

Cerebral toxoplasmosis is characterized by activation of brain resident cells and recruitment of specific immune cell subsets from the periphery to the central nervous system (CNS). Our studies revealed that the rapidly invaded Ly6G neutrophil granulocytes are an early non-lymphoid source of interferon-gamma (IFN-γ), the cytokine known to be the major mediator of host resistance to (). Upon selective depletion of Ly6G neutrophils, we detected reduced IFN-γ production and increased parasite burden in the CNS.

View Article and Find Full Text PDF

Background: Cutaneous microdialysis (CM) is an ex vivo technique that allows study of tissue chemistry, including bioavailability of actual tissue concentration of unbound drug in the interstitial fluid of the body.

Aim: To test the penetration and dermal bioavailability of galenic formulations of the small-molecule IP10.C8, a dual-protease inhibitor of the dipeptidyl peptidase and aminopeptidase families.

View Article and Find Full Text PDF

The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses.

View Article and Find Full Text PDF

In adult mice, lymphopenia-induced proliferation (LIP) leads to T cell activation, memory differentiation, tissue destruction, and a loss of TCR diversity. Neonatal mice are lymphopenic within the first week of life. This enables some recent thymic emigrants to undergo LIP and convert into long-lived memory T cells.

View Article and Find Full Text PDF

Background: Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DP IV)/CD26 and aminopeptidase N (APN)/CD13 family enzymes control T cell functions. We have previously defined these peptidases as targets to treat autoimmune disease, but the underlying mechanism is unclear. Here, we determined the effect of enzymatic inhibitors on chemotaxis by CD4+ effector T (Teff) cells.

View Article and Find Full Text PDF

The discovery of the DP4-related enzymes DP8 and DP9 raised controversial discussion regarding the physiological and pathophysiological function of distinct members of the DP4 family. Particularly with regard to their potential relevance in regulating immune functions, it is of interest to know which role the subcellular distribution of the enzymes play. Synthetic substrates as well as low molecular weight inhibitors are widely used as tools, but little is yet known regarding their features in cell experiments, such as their plasma membrane penetration capacity.

View Article and Find Full Text PDF

Cellular dipeptidyl peptidase IV (DP IV, CD26) and amino-peptidase N (APN, CD13) play regulatory roles in T cell activation and represent potential targets for treatment of inflammatory disorders. We have developed a novel therapeutic strategy, 'peptidase-targeted Immunoregulation' (PETIR™), which simultaneously targets both cellular DP IV and APN via selective binding sites different from the active sites with a single inhibitor. To prove the therapeutic concept of PETIR™ in autoimmunity of the central nervous system (CNS), we evaluated the effect of a single substance, PETIR-001, in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in SJL/J mice.

View Article and Find Full Text PDF

Background: Dipeptidyl peptidase IV (DP IV, CD26) and DP IV-like enzymes, such as dipeptidyl peptidase II (DP II), dipeptidyl peptidase 8 (DP8), and dipeptidyl peptidase 9 (DP9), have been recognized to regulate T lymphocyte activation. Lys[Z(NO2)]-thiazolidide (LZNT) and Lys[Z(NO2)]-pyrrolidide (LZNP), non-selective inhibitors of DP IV-like activity known to target DP IV as well as DP II, DP8, and DP9, suppress T lymphocyte proliferation in vitro. Moreover, these inhibitors are capable of attenuating the severity of autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, and experimental arthritis, a model of human rheumatoid arthritis, in vivo, particularly in combination with inhibitors of aminopeptidase N (APN, CD13) enzymatic activity.

View Article and Find Full Text PDF

Background: In the past, different research groups could show that treatment of immune cells with inhibitors of post-proline splitting dipeptidyl aminopeptidases leads to functional changes in the immune system consistent with immunosuppression. This is due to the inhibition of proliferation of lymphocytes and the production of inflammatory cytokines of the TH1, TH2, and TH17, cells as well as the induction of immunosuppressive cytokines, such as transforming growth factor-beta1 (TGF-beta1) and interleukin (IL)-1RA. Until recently, most of the effects of these inhibitors on immune functions were attributed to the inhibition of dipeptidyl aminopeptidase IV (DPIV/CD26).

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) are driven by imbalances in innate and acquired immune response. In IBD two dysregulated T cell subsets are in the focus of interest: activated effector T cells and regulatory T cells. These T cell subsets are characterized by a strong expression of the ectopeptidases dipeptidyl peptidase IV (DPIV /CD26) and aminopeptidase N (APN/CD13), which are thought to a role in the control of immune activation and in regulating cellular communication by hydrolyzing bioactive polypeptides.

View Article and Find Full Text PDF

Skin cells express dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related molecules of the DP IV-like family DP2, DP6, DP8, DP9 and fibroblast activation protein (FAP), as well as the cytoplasmic alanyl aminopeptidase (cAAP). The inhibitors of DP IV-like activity, Lys(Z(NO2))-thiazolidide (LZNT) and Lys(Z(NO2))-pyrrolidide (LZNP), and the APN inhibitors actinonin and bestatin affect proliferation, differentiation and cytokine production in sebocytes and keratinocytes, which are involved in the initiation of acne. Furthermore, they suppress proliferation of Propionibacterium acnes-stimulated T cells ex vivo and induce an anti-inflammatory cytokine profile.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Peptidases like dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) play a regulatory role in T cell activation and represent potential targets for the treatment of inflammatory disorders. Synthetic inhibitors of DP IV and/or APN enzymatic activity induce production of the immunosuppressive cytokine TGF-beta1 and subsequently suppress DNA synthesis and Th1 cytokine production of activated human T cells.

View Article and Find Full Text PDF

The ectopeptidases dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) are known to regulate T cell activation. Since selective inhibitors of DP IV and APN suppress DNA synthesis and cytokine production of stimulated T cells in a TGF-beta1-dependent manner, we tested whether combined application of DP IV and APN inhibitors enhances this immunomodulatory effect. The results show that simultaneous application of DP IV and APN inhibitors significantly suppressed DNA synthesis in mitogen- or anti-CD3-stimulated human T cells in vitro when compared to the use of a single DP IV or APN inhibitor.

View Article and Find Full Text PDF

Inhibitors of alanyl-aminopeptidase e.g. phebestin increase the expression of transforming growth factor (TGF)-beta1 in mononuclear cells.

View Article and Find Full Text PDF

The ectoenzymes dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) have been implicated in the regulation of T cell activation and function. Both DP IV and APN serve as targets of efficient enzymatic inhibitors which induce autocrine production of TGF-beta1 and subsequent suppression of T cell proliferation and cytokine release. Here, we tested the hypothesis that the simultaneous inhibition of DP IV and APN enzymatic activity on leukocytes potentiates the anti-inflammatory effect of single DP IV or APN inhibitors.

View Article and Find Full Text PDF

The ectopeptidases Dipeptidylpeptidase IV and Alanyl-Aminopeptidase N, strongly expressed by both, activated and regulatory T cells were shown to co-operate in T cell regulation. Based on the findings that DPIV and APN inhibitors induce the TGF-beta1 and IL-10 production and a suppression of T helper cell proliferation in parallel, and that particularly APN inhibitors amplify the suppressing activity of regulatory T cells, both peptidases represent a promising target complex for treatment of diseases associated with an imbalanced T cell response, such as inflammatory bowel diseases (IBD). The aim of the present study was to analyze the therapeutic potential of DPIV and APN inhibitors in vivo in a mouse model of colitis.

View Article and Find Full Text PDF