Traditional Chinese medicine (TCM) not only maintains the health of Asian people but also provides a great resource of active natural products for modern drug development. Herein, we developed a Database of Constituents Absorbed into the Blood and Metabolites of TCM (DCABM-TCM), the first database systematically collecting blood constituents of TCM prescriptions and herbs, including prototypes and metabolites experimentally detected in the blood, together with the corresponding detailed detection conditions through manual literature mining. The DCABM-TCM has collected 1816 blood constituents with chemical structures of 192 prescriptions and 194 herbs and integrated their related annotations, including physicochemical, absorption, distribution, metabolism, excretion, and toxicity properties, and associated targets, pathways, and diseases.
View Article and Find Full Text PDFOne of the most difficult problems that hinder the development and application of herbal medicine is how to illuminate the global effects of herbs on the human body. Currently, the chemo-centric network pharmacology methodology regards herbs as a mixture of chemical ingredients and constructs the 'herb-compound-target-disease' connections based on bioinformatics methods, to explore the pharmacological effects of herbal medicine. However, this approach is severely affected by the complexity of the herbal composition.
View Article and Find Full Text PDFEthnopharmacological Relevance: Herbal medicine is a concoction of numerous chemical ingredients, and it exhibits polypharmacological effects to act on multiple pharmacological targets, regulating different biological mechanisms and treating a variety of diseases. Thus, this complexity is impossible to deconvolute by the reductionist method of extracting one active ingredient acting on one biological target.
Aim Of The Study: To dissect the polypharmacological effects of herbal medicines and their underling pharmacological targets as well as their corresponding active ingredients.
Herbal medicine is a mixture of multiple compounds, and is intended to exhibit therapeutic effects by attacking multiple disease-causing modules simultaneously. However, it is still a challenge for scientists to untangle the complex biological mechanisms and underlying material basis of herbal medicine. Here, this study was designed to build a systems-biology platform for exploring the molecular mechanisms and corresponding active compounds, with a typical example applied to an herbal formula Qishenkel (QSKL) in the treatment of chronic myocardial ischemia.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
December 2013
Objective. To explore new diagnostic patterns for syndromes to overcome the insufficiency of obtainable macrocharacteristics and specific biomarkers. Methods.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
March 2013
Objective: To explore the onset cycle of scarlet fever in Beijing and its association with theory of five evolutive phases and six climatic factors (FEPSCF).
Methods: Based on the monthly scarlet fever data from 1970 to 2004, Complex Morlet wavelet was adopted to analyze the annual incidence and the incidence of six climatic factors in the past 35 years. Its association with the cycles of FEP-SCF was explored.