An injury to the spinal cord results in a crucial central nervous system event that further causes irreversible impairment or loss of motor, autonomic, and sensory functions. A progressive pathophysiological cascade following spinal cord injury (SCI) includes ischemia/reperfusion injury, oxidative stress, proapoptotic signaling, peripheral inflammatory cell infiltration, and glutamate-mediated excitotoxicity, and regulated cell death. These complex pathological and physiological changes continue to cause cell injury over the long-term and severely limit the efficacy of clinical treatment strategies in restoring the injured nervous system.
View Article and Find Full Text PDFAstrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure.
View Article and Find Full Text PDF