Lithium metal batteries (LMBs) are a promising candidate for next-generation energy storage devices. However, the high irreversibility and dead Li accumulation of the lithium metal anode caused by its fragile original solid electrolyte interface (SEI) seriously hinder the practical application of LMBs. Herein, a facile slurry-coating and one-step thermal fluorination reaction method is proposed to construct the 3D structural LiF-protected Li/G composite anode.
View Article and Find Full Text PDFThe fragile electrolyte/Li interface is responsible for the long-lasting consumption of Li resources and fast failure of Li metal batteries. The polymer artificial interface with high mechanical flexibility is a promising candidate to maintain the stability of the electrolyte/Li interface; however, sluggish Li-ion transportation of the conventional polymer interface hinders the application. In this work, Li-functionalized graphene oxide (GO-ADP-Li), which is synthesized by covalent grafting of adenosine 5'-diphosphate lithium on GO nanosheets, is used as a functional additive to improve the Li-ion conductivity of the polymer artificial interface based on PVDF-HFP/LiTFSI.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Using a coating layer to modify the separator in a practical Li metal battery has attracted wide attention; however, its function on Li-ion diffusion and Li plating/stripping has not been systematically investigated. Herein, in situ electrochemical Raman characterization using modified coin cell configuration is employed to directly reveal the anion adsorption mechanism of the coating layer. The adsorption ability of the MOF-based coating layer on the commercial separator is able to preserve high concentration of anions near the electrolyte/Li interface, which generates high local Li-ion concentration that delays the drain of Li to uniform Li plating.
View Article and Find Full Text PDF