Publications by authors named "Bangs J"

Unlabelled: The protozoan parasite is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases.

View Article and Find Full Text PDF

Secretory cargos are exported from the ER via COPII coated vesicles that have an inner matrix of Sec23/Sec24 heterotetramers and an outer cage of Sec13/Sec31 heterotetramers. In addition to COPII, Sec13 is part of the nuclear pore complex (NPC) and the regulatory SEA/GATOR complex in eukaryotes, which typically have one Sec13 orthologue. The kinetoplastid parasite has two paralogues: TbSec13.

View Article and Find Full Text PDF

Phosphosphingolipids (PSL) are essential components of eukaryotic membranes. The major PSL in fungi and protists is inositol phosphorylceramide (IPC), while sphingomyelin (SM), and to a lesser extent ethanolamine phosphorylceramide (EPC) predominate in mammals. Most kinetoplastid protozoa have a syntenic locus that encodes a single sphingolipid synthase (SLS) gene.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic cells have a secretory pathway that facilitates the transport of proteins between cellular compartments, particularly from the endoplasmic reticulum to the Golgi apparatus via COPII vesicles.
  • In African trypanosomes, two forms of the proteins Sec23 and Sec24 form necessary complexes for transporting specific proteins, like GPI-anchored proteins (GPI-APs), which differ in function between their bloodstream form (BSF) and procyclic form (PCF).
  • Research indicates that these proteins are essential for maintaining protein trafficking processes across different life stages of the trypanosomes, revealing adaptations that optimize their secretory pathways for varying environments.
View Article and Find Full Text PDF

African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-phospholipase C (GPI-PLC) is an enzyme that has been implicated in GPI-dependent protein trafficking and phosphoinositide metabolism in the bloodstream stage of African trypanosomes. However, despite the fact that it is associated with the cytoplasmic face of internal organellar compartments, its role in general membrane trafficking has not been investigated. Using a GPI-PLC null cell line, we determine the effect of GPI-PLC deficiency on these processes.

View Article and Find Full Text PDF

African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells.

View Article and Find Full Text PDF

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association.

View Article and Find Full Text PDF

p67 is a type I transmembrane glycoprotein of the terminal lysosome of African trypanosomes. Its biosynthesis involves transport of an initial gp100 ER precursor to the lysosome, followed by cleavage to N-terminal (gp32) and C-terminal (gp42) subunits that remain non-covalently associated. p67 knockdown is lethal, but the only overt phenotype is an enlarged lysosome (~250 to >1000 nm).

View Article and Find Full Text PDF

Misfolded proteins trapped in the endoplasmic reticulum (ER) are specifically recognized and retrotranslocated to the cytosol by the ER-Associated Degradation (ERAD) system and delivered to the proteasome for destruction. This process was recently described in Trypanosoma brucei (T. brucei) using the misfolded epitope tagged Transferrin Receptor subunits ESAG7:Ty and HA:ESAG6 (HA:E6).

View Article and Find Full Text PDF

The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4.

View Article and Find Full Text PDF

The transferrin receptor (TfR) of the bloodstream form (BSF) of is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five -glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues.

View Article and Find Full Text PDF

This study used retrospective chart review and survey data to evaluate: (1) off-label use of rituximab (MabThera/Rituxan) in autoimmune conditions and (2) patients' receipt and knowledge of the Patient Alert Card (PAC), a risk minimization measure for progressive multifocal leukoencephalopathy (PML) and serious infections. Anonymized patient data were collected from infusion centers in Europe from December 2015 to July 2017. Adults receiving rituximab in the same centers were provided a self-administered survey.

View Article and Find Full Text PDF

Cathepsin L (TbCatL) is an essential lysosomal thiol protease in African trypanosomes. TbCatL is synthesized as two precursor forms (P/X) that are activated to mature form (M) with the removal of the prodomain upon arrival in the lysosome. We examine TbCatL trafficking in a novel system: truncated TbCatL reporter without the C-terminal domain (CTD; TbCatL∆) ectopically expressed in an RNA interference (RNAi) cell line targeting the CTD/3' untranslated region (UTR) of endogenous mRNA.

View Article and Find Full Text PDF

The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years.

View Article and Find Full Text PDF

Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor.

View Article and Find Full Text PDF

Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes.

View Article and Find Full Text PDF

The critical virulence factor of bloodstream-form is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.

View Article and Find Full Text PDF

Bloodstream-form African trypanosomes encode two structurally related glycosylphosphatidylinositol (GPI)-anchored proteins that are critical virulence factors, variant surface glycoprotein (VSG) for antigenic variation and transferrin receptor (TfR) for iron acquisition. Both are transcribed from the active telomeric expression site. VSG is a GPI2 homodimer; TfR is a GPI1 heterodimer of GPI-anchored ESAG6 and ESAG7.

View Article and Find Full Text PDF

Protein trafficking through endo/lysosomal compartments is critically important to the biology of the protozoan parasite Trypanosoma brucei, but the routes material may take to the lysosome, as well as the molecular factors regulating those routes, remain incompletely understood. Phosphoinositides are signaling phospholipids that regulate many trafficking events by recruiting specific effector proteins to discrete membrane subdomains. In this study, we investigate the role of one phosphoinositide, PI(3,5)P in T.

View Article and Find Full Text PDF

Background: Control and elimination of human African trypanosomiasis (HAT) can be accelerated through the use of diagnostic tests that are more accurate and easier to deploy. The goal of this work was to evaluate the immuno-reactivity of antigens and identify candidates to be considered for development of a simple serological test for the detection of Trypanosoma brucei gambiense or T. b.

View Article and Find Full Text PDF

Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ).

View Article and Find Full Text PDF

Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is a stress mechanism to cope with misfolded proteins in the early secretory pathway, the hallmark being transcriptional upregulation of endoplasmic reticulum (ER) molecular chaperones such as BiP and protein disulfide isomerase. Despite the lack of transcriptional regulation and the absence of the classical UPR machinery, African trypanosomes apparently respond to persistent ER stress by a UPR-like response, including upregulation of BiP, and a related spliced leader silencing (SLS) response whereby SL RNA transcription is shut down. Initially observed by knockdown of the secretory protein translocation machinery, both responses are also induced by chemical agents known to elicit UPR in mammalian cells (H.

View Article and Find Full Text PDF

The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes.

View Article and Find Full Text PDF