Publications by authors named "Bangkang Fu"

Accurate medical image segmentation is of great significance for subsequent diagnosis and analysis. The acquisition of multi-scale information plays an important role in segmenting regions of interest of different sizes. With the emergence of Transformers, numerous networks adopted hybrid structures incorporating Transformers and CNNs to learn multi-scale information.

View Article and Find Full Text PDF

Gastric cancer is a significant contributor to cancer-related fatalities globally. The automated segmentation of gastric tumors has the potential to analyze the medical condition of patients and enhance the likelihood of surgical treatment success. However, the development of an automatic solution is challenged by the heterogeneous intensity distribution of gastric tumors in computed tomography (CT) images, the low-intensity contrast between organs, and the high variability in the stomach shapes and gastric tumors in different patients.

View Article and Find Full Text PDF

Background And Objectives: The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process.

View Article and Find Full Text PDF

Quantitative susceptibility mapping (QSM) has been applied to the measurement of iron deposition and the auxiliary diagnosis of neurodegenerative disease. There still exists a dipole inversion problem in QSM reconstruction. Recently, deep learning approaches have been proposed to resolve this problem.

View Article and Find Full Text PDF

Background And Objectives: Gastric cancer has high morbidity and mortality compared to other cancers. Accurate histopathological diagnosis has great significance for the treatment of gastric cancer. With the development of artificial intelligence, many researchers have applied deep learning for the classification of gastric cancer pathological images.

View Article and Find Full Text PDF