Publications by authors named "Banghao Sun"

Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group.

View Article and Find Full Text PDF

To explore the role of gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis.

View Article and Find Full Text PDF

Prevention and treatment of atherosclerosis (AS) by targeting the inflammatory response in vascular endothelial cells has attracted much attention in recent years. Laminar shear stress (LSS) has well-recognized anti-AS properties, however, the exact molecular mechanism remains unclear. In this study, we found that LSS could inhibit the increased expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), and matrix metallopeptidase-9 (MMP-9) caused by TNF-α in an autophagy-dependent pathway in human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Background: Brain tumours are the most common solid tumour in children and are a cause of mortality in adults. Most cases of brain tumour-related death are attributed to glioblastoma (GBM), with an elevated rate for high-grade glioma (HGG). Showing strong heterogeneity, the lesion location, molecule expression and type of HGG differ between adults and children.

View Article and Find Full Text PDF

Objectives: microRNAs (miRNAs) have provided a new opportunity for developing diagnostic biomarkers and effective therapeutic targets in gastric cancer (GC). In this study, we aimed to investigate the relationship between miR-515-3p and GC development.

Experimental Design: The Gene Expression Omnibus (GEO) database was used for screening genes and miRNA and for 2R analysis.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most lethal malignant tumors; the resistance of this type of tumor is the main source of GC treatment failure. In this study, we used bioinformatics analysis to verify differences in resistant GCs and identify an effective method for reversing drug resistance in GC. Microarray data [gene and microRNA (miRNA)] were analyzed using GEO2R software, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to further enrich the genetic data.

View Article and Find Full Text PDF

The prognosis of gastric cancer (GC) remains poor due to clinical drug resistance, and novel drugs are urgently needed. Apoptin-derived peptide (AdP) is an antitumor polypeptide constructed in our laboratory that has been used to combat cisplatin (CDDP) resistance in GC cells. MTT and colony-formation assays and Hoechst 33342 staining were used to measure the cytotoxicity of CDDP and AdP in GC cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is associated with poor prognosis due to its resistance to surgery, irradiation, and conventional chemotherapy. Thus, efficient therapeutic approaches for the treatment of GBM are urgently needed. HSP70 is an antiapoptotic protein that participates in the inhibition of both mitochondrial and membrane receptor apoptosis pathways and is highly expressed in glioma tissues.

View Article and Find Full Text PDF