Background: Visual scoring of tubular damage has limitations in capturing the full spectrum of structural changes and prognostic potential. We investigate if computationally quantified tubular features can enhance prognostication and reveal spatial relationships with interstitial fibrosis.
Methods: Deep-learning and image-processing-based segmentations were employed in N=254/266 PAS-WSIs from the NEPTUNE/CureGN datasets (135/153 focal segmental glomerulosclerosis and 119/113 minimal change disease) for: cortex, tubular lumen (TL), epithelium (TE), nuclei (TN), and basement membrane (TBM).