Background: The objective of this study was to investigate the effect-site concentration (Ce) of remimazolam at loss of response (LOR) and recovery of response (ROR) in patients underwent general anesthesia using simulation. In addition, the relationships between patient's factors and simulated Ce at LOR and ROR were examined.
Methods: The medical records of 81 patients who underwent elective surgery under general anesthesia using remimazolam with simulation of Ce between August 4, 2021 and October 12, 2021, were retrospectively reviewed.
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions.
View Article and Find Full Text PDFObjective: The aim of this study was to identify predictive factors for hemorrhagic cerebral hyperperfusion syndrome (hCHS) after direct bypass surgery in adult nonhemorrhagic moyamoya disease (non-hMMD) using quantitative parameters on rapid processing of perfusion and diffusion (RAPID) perfusion CT software.
Methods: A total of 277 hemispheres in 223 patients with non-hMMD who underwent combined bypass were retrospectively reviewed. Preoperative volumes of time to maximum (Tmax) > 4 seconds and > 6 seconds were obtained from RAPID analysis of perfusion CT.
Owing to its low mechanical compliance, liquid metal is intrinsically suitable for stretchable electronics and future wearable devices. However, its invariable strain-resistance behavior according to the strain-induced geometrical deformation and the difficulty of circuit patterning limit the extensive use of liquid metal, especially for strain-insensitive wiring purposes. To overcome these limitations, herein, novel liquid-metal-based electrodes of fragmented eutectic gallium-indium alloy (EGaIn) and Ag nanowire (NW) backbone of which their entanglement is controlled by the laser-induced photothermal reaction to enable immediate and direct patterning of the stretchable electrode with spatially programmed strain-resistance characteristics are developed.
View Article and Find Full Text PDFParticulate matter (PM) can cause oxidative stress, inflammation, and skin aging. We investigated the effects of antioxidants such as dieckol, punicalagin, epigallocatechin gallate (EGCG), resveratrol, and Siegesbeckiae Herba extract (SHE) against PM < 10 μm (PM10) on serum IgE concentration, mast cell counts, inflammatory cytokines, and keratinocyte differentiation markers in a 2,4-Dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model. Seven-week-old BALB/c mice were sensitized with 2% DNCB.
View Article and Find Full Text PDFCalcium carbonate is one of the most common minerals, and its polymorphic formation and transformation pathways from the amorphous to crystalline phases are well documented. However, the effects of locally created pH changes on the preferential formation of amorphous calcium carbonate (ACC) or its crystalline phase remain poorly understood. In this study, the influence of the initial solution pH on the precipitated polymorphs of calcium carbonate was investigated by the rapid mixing of each solution containing calcium or carbonate ions in the absence of additives.
View Article and Find Full Text PDFThe electrochemical applications of enzymes are often hampered by poor enzyme stability and low electron conductivity. In this work, a novel enzyme nanogel based on atom transfer radical polymerization (ATRP) has been developed for highly sensitive detection of glucose based on ferrocene (Fc) embedded in crosslinked polymer network nanogel. Enzyme surfaces are successively modified with Br initiator, and then in situ atom transfer radical polymerization (ATRP) was performed to build up crosslinked polyacrylamide network.
View Article and Find Full Text PDFIntroduction: During regenerative endodontic procedures, the microenvironment of the canal is formed by the degree of disinfection and release of ions from the applied materials onto the top surface. This study aimed to characterize the effects of amnion-chorion membrane and collagen membrane on pulp-dentin regeneration compared to calcium silicate cements (CSCs), focusing on cell migration, mineralization potential, anti-inflammation, and angiogenesis.
Methods: Two CSCs and 2 membranes were used: ProRoot MTA (Dentsply, Tulsa, OK, USA), RetroMTA (BioMTA, Seoul, Korea), Collagen Membrane (Genoss, Suwon, Korea), and BioXclude (amnion-chorion membrane; Snoasis Medical, Colorado, USA).
We describe -selective C-H functionalization of arylsilanes using a Si-tethered directing group. The current method enables a selective alkenylation of arenes bearing a variety of functional groups, and several electron-deficient olefins are also applicable as coupling partners. Further functional group transformations of the silicon-tethered directing group provide multisubstituted arenes efficiently.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) possess immunomodulatory properties that have therapeutic potential for the treatment of inflammatory diseases. This study investigates the effects of direct MSC administration on asthmatic airways. Umbilical cord MSCs (ucMSCs) were intratracheally administered to six-week-old female BALB/c mice sensitized and challenged with ovalbumin; airway hyperresponsiveness (AHR), analyses of airway inflammatory cells, lung histology, flow cytometry, and quantitative real-time PCR were performed.
View Article and Find Full Text PDFIn conventional wear simulation, the geometry must be updated for succeeding iterations to predict the accumulated wear. However, repeating this procedure up to the desired iteration is rather time consuming. Thus, a wear simulation process capable of reasonable quantitative wear prediction in reduced computational time is needed.
View Article and Find Full Text PDFDespite its clinical efficacy in HER2-positive cancers, resistance to trastuzumab inevitably occurs. The DNA damage response (DDR) pathway is essential for maintaining genomic stability and cell survival. However, the role of the DDR pathway in HER2-positive tumors and trastuzumab resistance remains elusive.
View Article and Find Full Text PDFHippocampal input to the hypothalamus is known to be critically involved in mediating the negative feedback inhibition of stress response. However, the underlying neural circuitry has not been fully elucidated. Using a combination of rabies tracing, pathway-specific optogenetic inhibition, and cell-type specific synaptic silencing, the present study examined the role of hippocampal input to the hypothalamus in modulating neuroendocrine and behavioral responses to stress in mice.
View Article and Find Full Text PDFGastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells.
View Article and Find Full Text PDFLayer-structured materials are of central importance in a wide range of research fields owing to their unique properties originating from their two dimensionality and anisotropy. Herein, quasi-2D layer-structured IMnV (I: alkali metals and V: pnictogen elements) compounds are investigated, which are potential antiferromagnetic (AFM) semiconductors. Single crystals of IMnV compounds are successfully grown using the self-flux method and their electronic and magnetic properties are analyzed in correlation with structural parameters.
View Article and Find Full Text PDFDevelopment of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS ) using the silicon substrate as the dopant medium is demonstrated.
View Article and Find Full Text PDFObesity is one of the most common diseases caused by an imbalance in the intake and expenditure of energy, and it is associated with various metabolic complications. This study aimed at investigating the anti-obesity effects and mechanisms of porcine collagen peptide (PCP) using 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. The PCP treatment significantly inhibited the adipocyte differentiation and attenuated the mRNA expression of transcription factors (CCAAT/enhancer-binding protein alpha [C/EBP] and peroxisome proliferator-activated receptor gamma [PPAR]) and the lipogenic gene (fatty acid synthase [FAS]) expression in 3T3-L1 preadipocytes.
View Article and Find Full Text PDFSelenophosphate synthetase 1 (SPS1) is an essential gene for the cell growth and embryogenesis in Drosophila melanogaster. We have previously reported that SPS1 deficiency stimulates the expression of genes responsible for the innate immune system, including antimicrobial peptides (AMPs), in Drosophila S2 cells. However, the underlying mechanism has not been elucidated.
View Article and Find Full Text PDFUltrafast charge transfer in van der Waals (vdW) heterostructures enables efficient control of two-dimensional material properties through strong optical absorption and subsequent carrier transfer. Here, using real-time time-dependent density functional theory coupled to molecular dynamics, we investigated the nonequilibrium dynamics of charge-density-wave (CDW) melting in 1-TaS triggered by ultrafast charge transfer in 1-TaS/MoSe or WSe heterostructures. Despite the fast and sufficient charge transfer from the MoSe (or WSe) "electrode" to the 1-TaS layer, the electronic excitation of the vdW heterostructure does not lead to the nonthermal CDW transition of 1-TaS.
View Article and Find Full Text PDFDespite numerous previous studies, the full action mechanism of the pathogenesis of asthma remains undiscovered, and the need for further investigation is increasing in order to identify more effective target molecules. Recent attempts to develop more efficacious treatments for asthma have incorporated mesenchymal stem cell (MSC)-based cell therapies. This study aimed to evaluate the anti-asthmatic effects of MSCs primed with Liproxstatin-1, a potent ferroptosis inhibitor.
View Article and Find Full Text PDFChoroidal neovascularization (CNV) is a defining characteristic feature of neovascular age-related macular degeneration (nAMD) that frequently results in irreversible vision loss. The current strategies for the treatment of nAMD are mainly based on neutralizing vascular endothelial growth factor (VEGF). However, anti-VEGF therapies are often associated with subretinal fibrosis that eventually leads to damages in macula.
View Article and Find Full Text PDFBackground: There have been occasional reports on varicella infection among healthcare workers (HCWs) despite varicella-zoster virus (VZV) seropositivity. We compared the levels of humoral and cellular immunity to VZV in seropositive HCWs who had acquired immunity by natural infection or vaccination.
Methods: Seropositive healthy HCWs with an apparent history of varicella or VZV vaccination once or twice were recruited.
We computationally investigate the conformational behavior, "bridging" chain, between different the phase-separated domains vs "looping" chain on the same domain, for two chain architectures of ABA triblock copolymers, one with a linear architecture (L-TBC) and the other with comb architecture (C-TBC) at various segregation regimes using dissipative particle dynamics (DPD) simulations. The power-law relation between the bridge fraction (Φ) and the interaction parameter (χ) for C-TBC is found to be Φ∼χ-1.6 in the vicinity of the order-disorder transition (χODT), indicating a drastic conversion from the bridge to the loop conformation.
View Article and Find Full Text PDFThe patterning of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels with excellent electrical property and spatial resolution is a challenge for bioelectronic applications. However, most PEDOT:PSS hydrogels are fabricated by conventional manufacturing processes such as photolithography, inkjet printing, and screen printing with complex fabrication steps or low spatial resolution. Moreover, the additives used for fabricating PEDOT:PSS hydrogels are mostly cytotoxic, thus requiring days of detoxification.
View Article and Find Full Text PDF