Introduction: Adverse events in health care affect 8% to 12% of patients admitted to hospitals in the European Union (EU), with surgical adverse events being the most common types reported.
Aim: SAFEST project aims to enhance perioperative care quality and patient safety by establishing and implementing widely supported evidence-based perioperative patient safety practices to reduce surgical adverse events.
Methods: We will conduct a mixed-methods hybrid type III implementation study supporting the development and adoption of evidence-based practices through a Quality Improvement Learning Collaborative (QILC) in co-creation with stakeholders.
Introduction: Measuring attitudes towards disability is meant to assess which interventions are most likely to create changes in population attitudes. Physical activities, such as Traditional Sports Games, are an excellent methodology to fight against the stigma of disabled people. Thus, the main aim of this study was to validate the Chedoke-McMaster Attitudes towards Children with Handicaps Scale (CATCH) adapted to a physical activity environment.
View Article and Find Full Text PDFArrestin-dependent G protein-coupled receptor (GPCR) signaling pathway is regulated by the phosphorylation state of GPCR's C-terminal domain, but the molecular bases of arrestin:receptor interaction are to be further illuminated. Here we investigated the impact of phosphorylation on the conformational features of the C-terminal region from three rhodopsin-like GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR), and the β2-adernergic receptor (β2AR). Using phosphomimetic variants, we identified pre-formed secondary structure elements, or short linear motifs (SLiMs), that undergo specific conformational transitions upon phosphorylation.
View Article and Find Full Text PDFThe functional properties of G protein-coupled receptors (GPCRs) are intimately associated with the different components in their cellular environment. Among them, sodium ions have been proposed to play a substantial role as endogenous allosteric modulators of GPCR-mediated signaling. However, this sodium effect and the underlying mechanisms are still unclear for most GPCRs.
View Article and Find Full Text PDFBackground: Medical deserts are considered a problematic issue for many Western countries which try to employ multitude of policies and initiatives to achieve a better distribution of their health workforce (HWF). The aim of this study was to systematically map research and provide an overview of definitions, characteristics, contributing factors and approaches to mitigate medical deserts within the European Union (EU)-funded project "ROUTE-HWF" (a Roadmap OUT of mEdical deserts into supportive Health WorkForce initiatives and policies).
Methods: We performed a scoping review to identify knowledge clusters/research gaps in the field of medical deserts focusing on HWF issues.
We report herein the synthesis of two non-ionic amphiphiles with a cholesterol hydrophobic moiety that can be used as chemical additives for biochemical studies of membrane proteins. They were designed to show a high similarity with the planar steroid core of cholesterol and small-to-medium polar head groups attached at the C3 position of ring-A on the sterol skeleton. The two Chol-Tris and Chol-DG have a Tris-hydroxymethyl and a branched diglucose polar head group, respectively, which provide them sufficient water solubility when mixed with the "gold standard" detergent n-Dodecyl-β-D-Maltoside (DDM).
View Article and Find Full Text PDFA way to study G protein-coupled receptors in a minimal system is to reconstruct artificial membrane mimics, made of detergent and/or of lipids in which the purified receptor is maintained. In particular, it is now possible to generate lipid nanoparticles, such as nanodiscs, in which a single receptor molecule is included. Such objects offer the invaluable potential of studying an isolated receptor stabilized in a finely controlled membrane-like environment to evaluate its pharmacology, its function, and its structure at the molecular level.
View Article and Find Full Text PDFBackground: Patient safety (PS) is a serious global public health problem affecting all countries. Estimates show that around 10 percent of the patients are harmed during hospital care, resulting in 23 million disability-adjusted life years lost per year. Experts emphasize research advancements as a key precondition for safer care.
View Article and Find Full Text PDFSynthesis of fluorescent P-hydroxybinaphtylphosphole-oxide or -sulfide was achieved by trapping a binaphtyl dianion with methyl dichlorophosphite or P-(N,N-diethylamino)dichlorophosphine, followed by oxidation or sulfuration of the P-center. After saponification or acid hydrolysis, the P-hydroxyphospholes were coupled to peptides using the coupling agent BOP, under the conditions required for the synthesis in solution or on a solid support. This new method was illustrated by the labeling of the JMV2959, a potent antagonist of the Growth Hormone Secretagogue Receptor type 1a (GHS-R1a).
View Article and Find Full Text PDFThe growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that regulates essential physiological functions. In particular, activation of GHSR in response to its endogenous agonist ghrelin promotes food intake and blood glucose increase. Therefore, compounds aimed at blocking GHSR signaling constitute potential options against obesity-related metabolic disorders.
View Article and Find Full Text PDFArrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR).
View Article and Find Full Text PDFCell membranes represent a complex and variable medium in time and space of lipids and proteins. Their physico-chemical properties are determined by lipid components which can in turn influence the biological function of membranes. Here, we used hydrostatic pressure to study the close dynamic relationships between lipids and membrane proteins.
View Article and Find Full Text PDFThere is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation.
View Article and Find Full Text PDFMetabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM.
View Article and Find Full Text PDFThe growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (Ca2.
View Article and Find Full Text PDFThe Hippo pathway is an evolutionarily conserved kinase cascade involved in the control of tissue homeostasis, cellular differentiation, proliferation, and organ size, and is regulated by cell-cell contact, apical cell polarity, and mechanical signals. Miss-regulation of this pathway can lead to cancer. The Hippo pathway acts through the inhibition of the transcriptional coactivators YAP and TAZ through phosphorylation.
View Article and Find Full Text PDFThe growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand.
View Article and Find Full Text PDFGHSR controls, among others, growth hormone and insulin secretion, adiposity, feeding, and glucose metabolism. Therefore, an inverse agonist ligand capable of selectively targeting GHSR and reducing its high constitutive activity appears to be a good candidate for the treatment of obesity-related metabolic diseases. In this context, we present a study that led to the development of several highly potent and selective inverse agonists of GHSR based on the 1,2,4-triazole scaffold.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) and Nuclear Receptors (NRs) are two signaling machineries that are involved in major physiological processes and, as a consequence, in a substantial number of diseases. Therefore, they actually represent two major targets for drugs with potential applications in almost all public health issues. Full exploitation of these targets for therapeutic purposes nevertheless requires opening original avenues in drug design, and this in turn implies a better understanding of the molecular mechanisms underlying their functioning.
View Article and Find Full Text PDFWe present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)-alkyne that resulted in formation of the biotinylated polymers.
View Article and Find Full Text PDFG Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds.
View Article and Find Full Text PDFLiver-expressed antimicrobial peptide 2 (LEAP2) was recently recognized as an endogenous ligand for the growth hormone secretagogue receptor (GHSR), which also is a receptor for the hormone ghrelin. LEAP2 blocks ghrelin-induced activation of GHSR and inhibits GHSR constitutive activity. Since fluorescence-based imaging and pharmacological analyses to investigate the biology of GHSR require reliable probes, we developed a novel fluorescent GHSR ligand based on the N-terminal LEAP2 sequence, hereafter named F-LEAP2.
View Article and Find Full Text PDF