Publications by authors named "Bandrauk A"

Molecular orbital symmetry is shown to be an important factor in determining orders and helicities (polarizations) of high-order harmonic generation (HHG) by intense femtosecond counter-rotating bichromatic circularly polarized laser pulses. Numerical solutions of time-dependent Schrödinger equations (TDSE) for the one-electron molecular ions H and H for different initial electronic states show that harmonic orders and helicities are dependent on orbital symmetries and of the net incident pulse electric field. The numerical results and properties of the harmonics are described by dynamical symmetry theory and time profile analysis of the high-order harmonics, thus confirming that orbital and laser pulse symmetry dependence are generic in HHG of molecules.

View Article and Find Full Text PDF

The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior.

View Article and Find Full Text PDF

Controlling coherence and interference of quantum states is one of the central goals in quantum science. Different from energetically discrete quantum states, however, it remains a demanding task to visualize coherent properties of degenerate states (e.g.

View Article and Find Full Text PDF

We theoretically study ultrafast photoelectron diffraction in triatomic molecules with cyclic geometry by ultrafast circular soft X-ray attosecond pulses. Molecular frame photoelectron distributions show complex diffraction patterns, arising from molecular multiple center interference and circular charge migration. It is found that photoelectron diffraction patterns depend on the initial electronic state, encoding the information of molecular orbital symmetries.

View Article and Find Full Text PDF

Ultrafast photoelectron imaging allows to measure information about coherent electron dynamic processes in materials or chemical compounds on femtosecond to attosecond time scales. We show that molecular time-resolved photoelectron diffraction produced by a time-delayed soft X-ray attosecond pulse can be used to monitor the ultrafast coherent excitation induced by a resonant UV pump pulse with variable carrier-envelope phases. Asymmetric diffraction angular patterns illustrate coherent electron dynamics of charge migration with spatiotemporal resolution on the attosecond and ångström scale.

View Article and Find Full Text PDF

Molecules constituted by different isotopes are different in vibrational modes, making it possible to elucidate the mechanism of a chemical reaction via the kinetic isotope effect. However, the real-time observation of the vibrational motion of isotopic nuclei in molecules is still challenging due to its ultrashort time scale. Here we demonstrate a method to monitor the nuclear vibration of isotopic molecules with the frequency modulation of high-order harmonic generation (HHG) during the laser-molecule interaction.

View Article and Find Full Text PDF

Charge migration is a fundamental and important process in the photochemistry of molecules and has been explored by time-resolved photoelectron angular distributions. A scheme based on UV pump and polarized soft X-ray probe techniques shows that photoelectron diffraction effects enable us to reconstruct electronic coherences encoding the information of the charge migration with extreme time resolutions. We discuss how probe pulse helicity influences the probing photoelectron spectra in the presence of molecular nonspherical Coulomb potentials.

View Article and Find Full Text PDF

Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule.

View Article and Find Full Text PDF

We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions.

View Article and Find Full Text PDF

Ultrafast charge migration is of fundamental importance to photoinduced chemical reactions. However, exploring such a quantum dynamical process requires demanding spatial and temporal resolutions. We show how electronic coherence dynamics induced in molecules by a circularly polarized UV pulse can be tracked by using a time-delayed circularly polarized attosecond X-ray pulse.

View Article and Find Full Text PDF

Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potentials of the reactant are modified dramatically. Here we perform a theoretical analysis combined with a time-dependent wavepacket calculation to show how a strong ultrafast laser field affects the photofragment products.

View Article and Find Full Text PDF

We propose a method to monitor coherent electron wave packet (CEWP) excitation dynamics with two-color attosecond laser pulses. Simulations are performed on aligned H by numerically solving the three-dimensional time-dependent Schrödinger equation with combinations of a resonant linearly polarized λ= 100/70 nm pump pulse and a circularly polarized λ=5 nm attosecond probe pulse. It is found that time dependent diffraction patterns in molecular frame photoelectron angular distributions (MFPADs) produced by the circular probe pulse exhibit sensitivity to the molecular alignments and time-dependent geometry of the CEWPs during and after the coherent excitation between the ground and excited states induced by the linear pump pulse.

View Article and Find Full Text PDF

We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic [Formula: see text] show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei.

View Article and Find Full Text PDF

The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds.

View Article and Find Full Text PDF

We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H2 (+) by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations.

View Article and Find Full Text PDF

We investigate photon-momentum sharing between an electron and an ion following different photoionization regimes. We find very different partitioning of the photon momentum in one-photon ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the electron acquires a momentum that is much greater than the single photon momentum ℏω/c [up to (8/5) ℏω/c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum corresponding to the photons absorbed above the field-free ionization threshold plus a momentum corresponding to a fraction (3/10) of the ionization potential Ip.

View Article and Find Full Text PDF

Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H(2)(+), D(2)(+), is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses.

View Article and Find Full Text PDF

The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser.

View Article and Find Full Text PDF

We study enhanced single and double ionizations and enhanced single and double excitations in the nonsymmetric two-electron diatomic molecular ion HeH(+) in an intense ultrashort laser pulse linearly polarized along the internuclear axis (z axis). We solve a three-dimensional time-dependent Schrödinger equation, TDSE, via correlated two-electron ab initio calculations within the fixed-nuclei approximation. A complex scaling method is used for calculation of both single and double ionizations.

View Article and Find Full Text PDF

The partitioning of the dipole moment of an isolated molecule or that of a reacting system is reviewed and applied to a dynamic reacting system whereby the system's dipole moment surface is constructed in parallel to its potential energy surface. The dipole moment surface is then decomposed into two origin-independent surfaces: (1) an atomic polarization (AP) surface and a charge transfer (CT) surface. The dipole moment surface as well as its two composing AP and CT surfaces are all further broken down into atomic and/or group contributions with the aid of the quantum theory of atoms in molecules (QTAIM).

View Article and Find Full Text PDF

Molecular photoionization by intense attosecond linearly and circularly polarized X-ray laser pulses is investigated from numerical solutions of time-dependent Schrödinger equations for the one-electron systems H2(+) and H3(++). Both momentum stripes and rings in photoelectron angular distributions are observed. The first with momentum intervals Δp(s)=2 π/R, where R is the molecular internuclear distance, results from interference of the coherent continuum scattering electron wave packets, which is shown to be insensitive to the laser polarization and wavelength.

View Article and Find Full Text PDF

Molecular photoelectron angular distributions (MPADs) by intense (I0 ≥ 10(14) W/cm(2)) circularly polarized ultrashort, few cycle (attosecond) ultraviolet laser pulses are presented from numerical solutions of time dependent Schrödinger equations. For the aligned molecular ion H2(+), the MPADs exhibit rotations with respect to the polarization and molecular symmetry axes which are determined by the symmetry of the initial electronics states. It is also found that the rotation angle of MPADs is insensitive to the pulse intensity.

View Article and Find Full Text PDF

We present a method for producing a single circularly polarized attosecond pulse by an intense few cycle elliptically polarized laser pulse combined with a terahertz field from numerical solutions of the time-dependent Schrödinger equation for the molecular ion H2(+). It is found that in the presence of a 62.5 THz (λ=4800  nm) field at an intensity of ∼10(14)  W/cm2, a single circularly polarized 114 as pulse can be generated by an elliptical polarized laser pulse at a wavelength of 400 nm with an ellipticity of ϵ=0.

View Article and Find Full Text PDF

A new mechanism for the production of electron-positron pairs from the interaction of a laser field and a fully ionized diatomic molecule in the tunneling regime is presented. When the laser field is turned off, the Dirac operator has resonances in both the positive and the negative energy continua while bound states are in the mass gap. When this system is immersed in a strong laser field, the resonances move in the complex energy plane: the negative energy resonances are pushed to higher energies while the bound states are Stark shifted [F.

View Article and Find Full Text PDF