Publications by authors named "Bandodkar A"

As the regenerative mechanisms of biological organisms, self-healing provides useful functions for soft electronics or associated systems. However, there have been few examples of soft electronics where all components have self-healing properties while also ensuring compatibility between components to achieve multifunctional and resilient bio-integrated electronics. Here, we introduce a stretchable, biodegradable, self-healing conductor constructed by combination of two layers: (i) synthetic self-healing elastomer and (ii) self-healing conductive composite with additives.

View Article and Find Full Text PDF

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Bioresorbable electronic systems require soft and stretchable substrates, but there are few elastomeric polymers with the necessary properties.
  • The newly introduced bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), showcases impressive characteristics like high elongation, toughness, and customizable dissolution rates.
  • By combining PGCL with conductive polymers, researchers can create stretchable, conductive materials for temporary devices that support healing, like sutures with drug delivery systems for post-surgical recovery.
View Article and Find Full Text PDF

Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties.

View Article and Find Full Text PDF

Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology.

View Article and Find Full Text PDF

Diabetic foot ulcers are chronic wounds that affect millions and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real-time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Herein, a miniaturized, wireless, battery-free wound monitor that measures lactate in real-time and seamlessly integrates with bandages for conformal attachment to the wound bed is introduced.

View Article and Find Full Text PDF

Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications.

View Article and Find Full Text PDF

This Editorial highlights some current challenges and emerging solutions in wearable sensors, a maturing field where interdisciplinary crosstalk is of paramount importance. Currently, investigation efforts are aimed at expanding the application scenarios and at translating early developments from basic research to widespread adoption in personal health monitoring for diagnostic and therapeutic purposes. This translation requires addressing several old and new challenges that are summarized in this editorial.

View Article and Find Full Text PDF

Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity.

View Article and Find Full Text PDF

Easy sample collection, physiological relevance, and ability to noninvasively and longitudinally monitor the human body are some of the key attributes of wearable sweat sensors. Examples typically include reversible sensors or an array of single-use sensors embedded in specialized microfluidics for temporal analysis of sweat. However, evolving this field to a level that truly represents "lab-on-skin" technology will require the incorporation of advanced functionalities that give the user the freedom to (1) choose the precise time for performing sample analysis and (2) select sensors from an array embedded within the device for performing condition-specific sample analysis.

View Article and Find Full Text PDF

Local electrical stimulation of peripheral nerves can block the propagation of action potentials, as an attractive alternative to pharmacological agents for the treatment of acute pain. Traditional hardware for such purposes, however, involves interfaces that can damage nerve tissue and, when used for temporary pain relief, that impose costs and risks due to requirements for surgical extraction after a period of need. Here, we introduce a bioresorbable nerve stimulator that enables electrical nerve block and associated pain mitigation without these drawbacks.

View Article and Find Full Text PDF

Wearable skin sensors is a promising technology for real-time health care monitoring. They are of particular interest for monitoring glucose in diabetic patients. The concentration of glucose in sweat can be more than two orders of magnitude lower than in blood.

View Article and Find Full Text PDF

The concentration of chloride in sweat remains the most robust biomarker for confirmatory diagnosis of cystic fibrosis (CF), a common life-shortening genetic disorder. Early diagnosis via quantitative assessment of sweat chloride allows prompt initiation of care and is critically important to extend life expectancy and improve quality of life. The collection and analysis of sweat using conventional wrist-strapped devices and iontophoresis can be cumbersome, particularly for infants with fragile skin, who often have insufficient sweat production.

View Article and Find Full Text PDF

Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids.

View Article and Find Full Text PDF

Aim: To explore the cerebrospinal fluid (CSF) metabolite features in acute neuroinflammatory diseases and identify potential biomarkers to diagnose and monitor neuroinflammation.

Method: A cohort of 14 patients (five females, nine males; mean [median] age 7y 9mo [9y], range 6mo-13y) with acute encephalitis (acute disseminated encephalomyelitis n=6, unknown suspected viral encephalitis n=3, enteroviral encephalitis n=2, seronegative autoimmune encephalitis n=2, herpes simplex encephalitis n=1) and age-matched non-inflammatory neurological disease controls (n=14) were investigated using an untargeted metabolomics approach. CSF metabolites were analyzed with liquid chromatography coupled to high resolution mass spectrometry, followed by subsequent multivariate and univariate statistical methods.

View Article and Find Full Text PDF

Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context.

View Article and Find Full Text PDF

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important.

View Article and Find Full Text PDF

Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release.

View Article and Find Full Text PDF

Enzymatic biofuel cell (EBFC)-based self-powered biochemical sensors obviate the need for external power sources thus enabling device miniaturization. While recent efforts driven by experimentalists illustrate the potential of EBFC-based sensors for real-time monitoring of physiologically relevant biochemicals, a robust mathematical model that quantifies the contributions of sensor components and empowers experimentalists to predict sensor performance is missing. In this paper, we provide an elegant yet simple equivalent circuit model that captures the complex, three-dimensional interplay among coupled catalytic redox reactions occurring in an EBFC-based sensor and predicts its output signal with high correlations to experimental observations.

View Article and Find Full Text PDF

Recently introduced classes of thin, soft, skin-mounted microfluidic systems offer powerful capabilities for continuous, real-time monitoring of total sweat loss, sweat rate and sweat biomarkers. Although these technologies operate without the cost, complexity, size, and weight associated with active components or power sources, rehydration events can render previous measurements irrelevant and detection of anomalous physiological events, such as high sweat loss, requires user engagement to observe colorimetric responses. Here we address these limitations through monolithic systems of pinch valves and suction pumps for purging of sweat as a reset mechanism to coincide with hydration events, microstructural optics for reversible readout of sweat loss, and effervescent pumps and chemesthetic agents for automated delivery of sensory warnings of excessive sweat loss.

View Article and Find Full Text PDF

Comprehensive analysis of sweat chemistry provides noninvasive health monitoring capabilities that complement established biophysical measurements such as heart rate, blood oxygenation, and body temperature. Recent developments in skin-integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and analysis. However, recording of time-dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use.

View Article and Find Full Text PDF