The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice.
View Article and Find Full Text PDFIn the central nervous system (CNS), generation of phenotypic diversity within the neuronal lineage is precisely regulated in a spatial and temporal fashion. Neural basic helix-loop-helix (bHLH) transcription factors are cell intrinsic factors that control commitment to neuronal lineage and play an important role in neuronal cell type specification. The ability to differentiate human embryonic stem (hES) cells into neurons provides a good model system to address human neuronal specification.
View Article and Find Full Text PDFThe activity of the P(CMV IE) promoter was studied during the differentiation of ES cells into neurons. In order to do this, stable embryonic stem (ES) cell lines that express enhanced green fluorescent protein (EGFP) under the control of P(CMV IE) were created and these ES cells were differentiated by aggregation of cells in the presence of retinoic acid (RA). Based on our observations that the activity of P(CMV IE) was highest in undifferentiated cells, and that cell-cell interaction and addition of RA that lead to enhanced cell proliferation also increased expression from P(CMV IE), we hypothesized that the activity of P(CMV IE) was positively regulated in cycling cells.
View Article and Find Full Text PDF