Publications by authors named "Bandaranayake A"

The Sri Lankan leopard (Panthera pardus kotiya) is an endangered subspecies restricted to isolated and fragmented populations in Sri Lanka. Among them, melanistic leopards have been recorded on a few occasions. Literature suggests the evolution of melanism several times in the Felidae family, with three species having distinct mutations.

View Article and Find Full Text PDF

Elephas maximus maximus Linnaeus, the Sri Lankan subspecies is the largest and the darkest among Asian elephants. Patches of depigmented areas with no skin color on the ears, face, trunk, and belly morphologically differentiate it from the others. The elephant population in Sri Lanka is now limited to smaller areas and protected under Sri Lankan law.

View Article and Find Full Text PDF

Internet of things (IoT) applications in smart agricultural systems vary from monitoring climate conditions, automating irrigation systems, greenhouse automation, crop monitoring and management, and crop prediction, up to end-to-end autonomous farm management systems. One of the main challenges to the advancement of IoT systems for the agricultural domain is the lack of training data under operational environmental conditions. Most of the current designs are based on simulations and artificially generated data.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced modeling software to predict the structure of 4,298 CDP scaffolds and identified potential CDP binders for a therapeutic target called PD-L1.
  • * A particularly effective CDP was developed that binds to PD-L1 and, when combined with another targeting agent, demonstrated superior ability to kill cancer cells and improve survival rates in mouse models compared to traditional antibody therapies.
View Article and Find Full Text PDF

Advances in the treatment of pediatric AML have been modest over the past four decades. Despite maximally intensive therapy, approximately 40% of patients will relapse. Novel targeted therapies are needed to improve outcomes.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption.

View Article and Find Full Text PDF

Field pea is important to agriculture as a nutritionally dense legume, able to fix nitrogen from the atmosphere and supply it back to the soil. However, field pea requires more phosphorus (P) than other crops. Identifying field pea cultivars with high phosphorus use efficiency (PUE) is highly desirable for organic pulse crop biofortification.

View Article and Find Full Text PDF

Recent advances in next-generation sequencing technologies have paved the path for a considerable amount of sequencing data at a relatively low cost. This has revolutionized the genomics and transcriptomics studies. However, different challenges are now created in handling such data with available bioinformatics platforms both in assembly and downstream analysis performed in order to infer correct biological meaning.

View Article and Find Full Text PDF

Objectives: Colistin is a 'last-line' antibiotic used to treat multidrug-resistant Gram-negative bacteria, but colistin resistance has emerged. Colistin normally binds to the lipid A moiety on the bacterial outer membrane, where it then destroys the bacterial membrane. Mobilize colistin resistance (MCR, encoded by mcr-1 and others) is a phosphoethanolamine transferase that modifies lipid A, preventing colistin binding.

View Article and Find Full Text PDF

Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery.

View Article and Find Full Text PDF

In the original version of this Article the colour key for the amino acid enrichment score was inadvertently omitted from the lower panel of Figure 5b during the production process. This has now been corrected in the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria.

View Article and Find Full Text PDF

Protein:protein interactions are among the most difficult to treat molecular mechanisms of disease pathology. Cystine-dense peptides have the potential to disrupt such interactions, and are used in drug-like roles by every clade of life, but their study has been hampered by a reputation for being difficult to produce, owing to their complex disulfide connectivity. Here we describe a platform for identifying target-binding cystine-dense peptides using mammalian surface display, capable of interrogating high quality and diverse scaffold libraries with verifiable folding and stability.

View Article and Find Full Text PDF

Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support pre-clinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins.

View Article and Find Full Text PDF

Siderocalin (also lipocalin 2, NGAL or 24p3) binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract.

View Article and Find Full Text PDF

A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression.

View Article and Find Full Text PDF

The adaptor protein CARMA1 is required for antigen receptor-triggered activation of IKK and JNK in lymphocytes. Once activated, the events that subsequently turn off the CARMA1 signalosome are unknown. In this study, we found that antigen receptor-activated CARMA1 underwent lysine 48 (K48) polyubiquitination and proteasome-dependent degradation.

View Article and Find Full Text PDF

The splenic B cell compartment is comprised of two major, functionally distinct, mature B cell subsets, i.e., follicular mature (FM) and marginal zone (MZ) B cells.

View Article and Find Full Text PDF

PKC isoforms and CARMA1 play crucial roles in immunoreceptor-dependent NF-kappaB activation. We tested whether PKC-dependent phosphorylation of CARMA1 directly regulates this signaling cascade. B cell antigen receptor (BCR) engagement led to the progressive recruitment of CARMA1 into lipid rafts and to the association of CARMA1 with, and phosphorylation by, PKCbeta.

View Article and Find Full Text PDF