Dry eye syndrome (DES) is a tear film disorder caused by increased tear evaporation or decreased production. The heavy workload on the eye and the increased usage of digital screens may decrease blink frequency, leading to an increased evaporation rate and an upsurge in the incidence and severity of DES. This study aims to assess the severity of DES symptoms and the risk factors among university students.
View Article and Find Full Text PDFBackground: Chemotherapy-related cardiotoxicity can exhibit several patterns of functional, structural, and vascular complications. This study aims to identify the patterns and the factors associated with cardiotoxicity in cancer patients.
Method: A retrospective cross-sectional analysis of 96 adult cancer patients undergoing anticancer therapy was investigated at King Khalid Hospital in Najran, Saudi Arabia, from May 2022 to April 2023.
This review thoroughly investigates the mechanical recycling of carbon fiber-reinforced polymer composites (CFRPCs), a critical area for sustainable material management. With CFRPC widely used in high-performance areas like aerospace, transportation, and energy, developing effective recycling methods is essential for tackling environmental and economic issues. Mechanical recycling stands out for its low energy consumption and minimal environmental impact.
View Article and Find Full Text PDFThe Industrial Internet of Things (IIoT) paradigm is a key research area derived from the Internet of Things (IoT). The emergence of IIoT has enabled a revolution in manufacturing and production, through the employment of various embedded sensing devices connected by an IoT network, along with a collection of enabling technologies, such as artificial intelligence (AI) and edge/fog computing. One of the unrivaled characteristics of IIoT is the inter-connectivity provided to industries; however, this characteristic might open the door for cyber-criminals to launch various attacks.
View Article and Find Full Text PDFIn the medical community, antibiotics are revered as a miracle because they stop diseases brought on by pathogenic bacteria. Antibiotics have become the cornerstone of contemporary medical advancements ever since penicillin was discovered. Antibiotic resistance developed among germs quickly, placing a strain in the medical field.
View Article and Find Full Text PDFPorous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon.
View Article and Find Full Text PDFMorbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction.
View Article and Find Full Text PDFIn this research study, three carbon fillers of varying dimensionality in the form of graphite (3D), graphite nano-platelets (2D), and multiwall carbon nanotubes (1D) were incorporated into a matrix of poly (ethylene terephthalate), forming carbon-reinforced polymer composites. Melt compounding was followed by compression moulding and then a quenching process for some of the samples to inhibit crystallization. The samples were analysed using dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM), considering the dimensionality and loading of the carbon fillers.
View Article and Find Full Text PDFThermal energy storage technology is an important topic, as it enables renewable energy technology to be available 24/7 and under different weather conditions. Phase changing materials (PCM) are key players in thermal energy storage, being the most economic among those available with adjustable thermal properties. Paraffin wax (PW) is one of the best materials used in industrial processes to enhance thermal storage.
View Article and Find Full Text PDFX-ray diffraction (XRD) analysis is a versatile and reliable method used in the identification of minerals in solid samples. It is one of the primary techniques geoscientists, mineralogist, solid-state chemists depend on to characterize the composition of unknown samples. In recent years there has been a growing interest among researchers to have readily accessible and large dataset to use to calibrate their experiment or to simply build various statistical models.
View Article and Find Full Text PDFIn this work, graphite nanoplatelets (GNP) were incorporated into poly (ethylene terephthalate) (PET) matrix to prepare PET-GNP nanocomposites using a melt compounding followed by compression moulding and then quenching process. Both static and dynamic mechanical properties of these quenched materials were characterized as a function of GNP contents using dynamic mechanical thermal analysis (DMTA) and tensile machine, respectively. The results demonstrated that the addition of GNP improved the stiffness of PET significantly.
View Article and Find Full Text PDFBlood cancer, or leukemia, has a negative impact on the blood and/or bone marrow of children and adults. Acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML) are two sub-types of acute leukemia. The Internet of Medical Things (IoMT) and artificial intelligence have allowed for the development of advanced technologies to assist in recently introduced medical procedures.
View Article and Find Full Text PDFCarbon felt (CF) is an inexpensive carbon-based material that is highly conductive and features extraordinary inherent surface area. Using such a metal-free, low-cost material for energy storage applications can benefit their practical implementation; however, only limited success has been achieved using metal-free CF for supercapacitor electrodes. This work thoroughly studies a cost-effective and simple method for activating metal-free self-supported carbon felt.
View Article and Find Full Text PDFThroughout history, wildlife has been regarded as a major source of infectious diseases. Rodentia, the most speciose order of mammals, whose members are recognised hosts of more than 60 zoonotic diseases, represent a potential threat to human health. Recently, epidemiological data from Saudi Arabia indicated an actual growth in the number of emerging and/or re-emerging cases of several zoonoses.
View Article and Find Full Text PDFRemote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data.
View Article and Find Full Text PDFThe main technical challenge for the electrolytic production of hydrogen via water splitting lies in realizing a very stable material that effectively oxidizes water under low overpotential (η). Of all materials, metal oxides hold the greatest promise due to their inherited chemical stability in aqueous solutions; however, electrolytic effectiveness in water oxidation reactions (OERs) is limited to precious metals. In this study, we designed metal oxide/metal oxide (MO/MO) nanoparticle heterointerfaces to offer more active sites and enhance the overall performance of the OER.
View Article and Find Full Text PDFHerein, for the first time, the growth of ZnO nanorods directly on aluminum (Al) substrate via a low temperature (80 °C) wet chemical method, and used as binder-free electrode for supercapacitors were reported. XRD pattern and HRTEM images showed that high crystalline nanorods grown on Al substrate with c-axis orientation. Morphological studies revealed that the nanorods possessed well defined hexagon phase with length and diameter of ~2 µm and 100-180 nm, respectively.
View Article and Find Full Text PDFQuantum dots (QDs) are attractive systems for potential applications in future solar energy technologies, due to their optical properties which are tunable as a function of size and composition. In this study, we synthesized PbS QDs with first excitonic peak in the range 1060 to 1300 nm using a PbCl/sulfur molar ratio of 10:1. The first excitonic absorption peak from 1300 to 950 nm of the PbS/CdS core/shell QDs can be further synthesized via the cation exchange approach.
View Article and Find Full Text PDFis developed to generate H from water. The anode is composed of a TiO mesoporous frame functionalized by colloidal core@shell quantum dots (QDs) followed by CdS and ZnS capping layers. Saturated photocurrent density as high as 11.
View Article and Find Full Text PDFA gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.
View Article and Find Full Text PDFSensors (Basel)
February 2016
Media access control (MAC) addresses in wireless networks can be trivially spoofed using off-the-shelf devices. The aim of this research is to detect MAC address spoofing in wireless networks using a hard-to-spoof measurement that is correlated to the location of the wireless device, namely the received signal strength (RSS). We developed a passive solution that does not require modification for standards or protocols.
View Article and Find Full Text PDFFerroelectric materials have been studied increasingly for solar energy conversion technologies due to the efficient charge separation driven by the polarization induced internal electric field. However, their insufficient conversion efficiency is still a major challenge. Here, a photocathode material of epitaxial double perovskite Bi(2) FeCrO(6) multiferroic thin film is reported with a suitable conduction band position and small bandgap (1.
View Article and Find Full Text PDFH2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers.
View Article and Find Full Text PDF