Publications by authors named "Banaszek K"

We theoretically investigate the performance of a coherent beam combination of two light beams under relative phase fluctuations in the photon starved regime. We apply a first-principles approach using the optimal Bayesian phase correction protocol. We analyze the efficiency of beam combination as a function of the phase fluctuations strength.

View Article and Find Full Text PDF

Quantum-inspired superresolution methods surpass the Rayleigh limit in imaging, or the analogous Fourier limit in spectroscopy. This is achieved by carefully extracting the information carried in the emitted optical field by engineered measurements. An alternative to complex experimental setups is to use simple homodyne detection and customized data analysis.

View Article and Find Full Text PDF

Composites are materials with a heterogeneous structure, composed of two or more components with different properties. The properties of composites are never the sum or average of the properties of their components. There is a lot of research and many models on the different property assessments of composite materials.

View Article and Find Full Text PDF

This study sought to experimentally develop guidelines for shaping 0.3-mm-thick cold-rolled grain-oriented ET 110-30LS steel using a shear-slitting operation. Coated and non-coated steel was used for the analysis.

View Article and Find Full Text PDF

The shape of the cutting blades of the abrasive grains has an influence on the material separation process in the machining zone. The paper analyzes the influence of the geometrical parameters of the abrasive grains (rake angle , apex angle , opening angle ), as well as width and length of the cutting zone on the material removal efficiency. The material removal efficiency was determined taking into account the volume of the removed material and the volume of lateral piles-up .

View Article and Find Full Text PDF

In this article, the methodology of using probabilistic models of the grinding tool wear process is presented. Probabilistic modeling with empirical data allowed determining the values of other important process features. Among them, the distribution of active grains lifetime or distribution of cumulative attritious wear of the grinding grain apex could be distinguished.

View Article and Find Full Text PDF

In this article, a method of grinding small ceramic elements using hyperboloid and conical grinding wheels was presented. The method allowed for machining with a lower material removal speed and extending the grinding zone without reducing the efficiency of the process. In order to assess the process output parameters, numerical simulations were carried out for single-pass machining.

View Article and Find Full Text PDF

Investigating the general corrosion resistance of Ti(C,N) type coatings on a prosthetic nickel alloy in the aspect of their use as protective coatings on prosthetic and orthodontic elements. Five groups of Ni-Cr alloy samples covered with Ti(C,N) type coatings differing in their carbon and nitrogen contents were used for the tests. The reference group included alloy samples without coatings.

View Article and Find Full Text PDF

This paper presents an effectiveness analysis of the grinding process with the use of a new multi-layer abrasive tool. The designed abrasive tool consists of external layers with a conventional structure, whose task is to decrease the grinding wheel load and ensure high grinding volumetric efficiency. The inner layer of the grinding wheel contains a 30% addition of abrasive aggregates.

View Article and Find Full Text PDF

We investigate theoretically coherent detection implemented simultaneously on a set of mutually orthogonal spatial modes in the image plane as a method to characterize properties of a composite thermal source below the Rayleigh limit. A general relation between the intensity distribution in the source plane and the covariance matrix for the complex field amplitudes measured in the image plane is derived. An algorithm to estimate parameters of a two-dimensional symmetric binary source is devised and verified using Monte Carlo simulations to provide super-resolving capability for a high ratio of signal to detection noise (SNR).

View Article and Find Full Text PDF

Time-frequency (TF) filtering of analog signals has played a crucial role in the development of radio-frequency communications and is currently being recognized as an essential capability for communications, both classical and quantum, in the optical frequency domain. How best to design optical time-frequency (TF) filters to pass a targeted temporal mode (TM), and to reject background (noise) photons in the TF detection window? The solution for 'coherent' TF filtering is known-the quantum pulse gate-whereas the conventional, more common method is implemented by a sequence of incoherent spectral filtering and temporal gating operations. To compare these two methods, we derive a general formalism for two-stage incoherent time-frequency filtering, finding expressions for signal pulse transmission efficiency, and for the ability to discriminate TMs, which allows the blocking of unwanted background light.

View Article and Find Full Text PDF

Multiparameter estimation theory offers a general framework to explore imaging techniques beyond the Rayleigh limit. While optimal measurements of single parameters characterizing a composite light source are now well understood, simultaneous determination of multiple parameters poses a much greater challenge that in general requires implementation of collective measurements. Here we show, theoretically and experimentally, that Hong-Ou-Mandel interference followed by spatially resolved detection of photons provides precise information on both the separation and the centroid for a pair of point emitters, avoiding trade-offs inherent to single-photon measurements.

View Article and Find Full Text PDF

We analyze the information efficiency of a deep-space optical communication link with background noise, employing the pulse position modulation (PPM) format and a direct-detection receiver based on Geiger-mode photon counting. The efficiency, quantified using Shannon mutual information, is optimized with respect to the PPM order under the constraint of a given average signal power in simple and complete decoding scenarios. We show that the use of complete decoding, which retrieves information from all combinations of detector photocounts occurring within one PPM frame, allows one to achieve information efficiency scaling as the inverse of the square of the distance, i.

View Article and Find Full Text PDF

Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase.

View Article and Find Full Text PDF

The aim of our work was to examine the cytotoxicity of NiCr alloys coated with Ti(C,N) with different amounts of C and N in the layer on human gingival fibroblasts. Cells were cultured for 24 hours in the alloy extracts or on the surface of tested materials. The viability of the cells exposed to 1-, 3-, 5- and 7-day extracts did not change in comparison to the viability of cells cultured in a control medium assayed by an MTT test.

View Article and Find Full Text PDF

We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in terms of transmittable classical information, is analogous to the recently proposed and demonstrated scheme based on coherent pulses and first-order interference, offering comparable advantage over classical fingerprinting protocols without access to shared prior randomness. We analyze the protocol taking into account non-Poissonian photon statistics of optical signals and a variety of imperfections, such as transmission losses, dark counts, and residual distinguishability.

View Article and Find Full Text PDF

We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S.

View Article and Find Full Text PDF

Purpose: The aim of our study was to examine the effect of prosthetic alloys with Ti (C, N) coatings on viability and pro life ration of human cells employing an MTT assay with the use of human microvascular endothelial cells derived from the skin - HMEC-1 (Human Microvascular Endothelial Cells-1).

Methods: Cylindrical shape samples made of Ni-Cralloy were divided into S1-S5 groups and coated with Ti (C, N) layers with different content of C and N. S0 group - control group without layer.

View Article and Find Full Text PDF

Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability of interfering photons. Here we introduce a method where appropriate design of the modal structure of input photons can alleviate deleterious effects caused by another, experimentally inaccessible degree of freedom.

View Article and Find Full Text PDF

We analyze the effect of phase fluctuations in an optical communication scheme based on collective detection of sequences of binary coherent state symbols using linear optics and photon counting. When the phase noise is absent, the scheme offers qualitatively improved nonlinear scaling of the spectral efficiency with the mean photon number in the low-power regime compared to individual detection. We show that this feature, providing a demonstration of superaddivitity of accessible information in classical communication over quantum channels, is preserved if random phases imprinted on transmitted symbols fluctuate around a reference fixed over the sequence length.

View Article and Find Full Text PDF

A key ingredient in emerging quantum-enhanced technologies is the ability to coherently manipulate and detect superpositions of basis states. In integrated optics implementations, transverse spatial modes supported by multimode structures offer an attractive carrier of quantum superpositions. Here we propose an integrated dynamic mode converter based on the electro-optic effect in nonlinear channel waveguides for deterministic transformations between mutually non-orthogonal bases of spatial modes.

View Article and Find Full Text PDF

Enterococci are able to survive endodontic procedures and contribute to the failure of endodontic therapy. Thus, it is essential to identify novel ways of eradicating them from infected root canals. One such approach may be the use of antimicrobials such as plant essential oils.

View Article and Find Full Text PDF

Aim: To examine the presence of microbial species in primary and secondary infections and identify the signs and symptoms associated with them.

Methodology: A total number of 37 root canals from 33 patients undergoing root canal treatment were selected. Samples were taken using a sterile paper point following chemomechanical canal instrumentation.

View Article and Find Full Text PDF

We analyze the performance of on-off keying (OOK) and its restricted version pulse position modulation (PPM) over a lossy narrowband optical channel under the constraint of a low average photon number, when direct detection is used at the output. An analytical approximation for the maximum PPM transmission rate is derived, quantifying the effects of photon statistics on the communication efficiency in terms of the g((2)) second-order intensity correlation function of the light source. Enhancement attainable through the use of sub-Poissonian light is discussed.

View Article and Find Full Text PDF