Publications by authors named "Banafsheh Zebhi"

Calcific aortic stenosis is a progressive disease that has become more prevalent in recent decades. Despite advances in research to uncover underlying biomechanisms, and development of new generations of prosthetic valves and replacement techniques, management of calcific aortic stenosis still comes with unresolved complications. In this review, we highlight underlying molecular mechanisms of acquired aortic stenosis calcification in relation to hemodynamics, complications related to the disease, diagnostic methods, and evolving treatment practices for calcific aortic stenosis.

View Article and Find Full Text PDF

Coronary flow induces hemodynamic alterations in the aortic sinus region. The objectives of this study are to: (1) investigate the differences among sinus hemodynamics and leaflet wall shear stresses engendered by the left versus right versus non-coronary flow and (2) correlate respective wall shear stresses with leaflet calcification in patients. A left heart simulator flow loop with a tunable coronary circuit provided physiological coronary flow waveforms corresponding to the left coronary cusp case (LCC), right coronary cusp case (RCC), and non-coronary cusp case (NCC).

View Article and Find Full Text PDF

Hypoplastic left heart syndrome (HLHS) represents approximately 9% of all congenital heart defects and is one of the most complex, with the left side of the heart being generally underdeveloped. Numerous studies demonstrate that intracardiac fluid flow patterns in the embryonic and fetal circulation can impact cardiac structural formation and remodeling. This highlights the importance of quantifying the altered hemodynamic environment in congenital heart defects, like HLHS, relative to a normal heart as it relates to cardiac development.

View Article and Find Full Text PDF

Cardiac morphogenesis requires an intricate orchestration of mechanical stress to sculpt the heart as it transitions from a straight tube to a multichambered adult heart. Mechanical properties are fundamental to this process, involved in a complex interplay with function, morphology, and mechanotransduction. In the current work, we propose a pressurization technique applied to the zebrafish atrium to quantify mechanical properties of the myocardium under passive tension.

View Article and Find Full Text PDF