Introduction: Cell therapy is the most advanced treatment of peripheral nerve injury. This study aimed to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats.
Methods: The bulge region of the rat whisker were isolated and cultured.
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) transplantation therapy has been proposed as a promising approach for the treatment of neurodegenerative disease. Chemical and pharmacological preconditioning before transplantation could optimize the therapeutic properties of transplanted MSCs. In this study, we hypothesized that preconditioning treatment with a prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG), will increase MSC efficacy and paracrine effects in an amyloid-β (Aβ)-injected Alzheimer rat model.
View Article and Find Full Text PDFIn this article the new proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated titania/cellulose nanohybrids (titania/cellulose-SOH) via ultrasonic waves. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. Ultrasonic irradiation has a very strong mixing and dispersion effect, much stronger than conventional stirring, which can improve the dispersion of titania/cellulose-SOH nanoparticles in the polymer matrix.
View Article and Find Full Text PDFHair follicle stem cells (HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area.
View Article and Find Full Text PDFBackground: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate seladin-1 gene expression in hair follicle stem cells.
View Article and Find Full Text PDFBackground: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications.
Methods: The bulge region of rat whisker was isolated and cultured in DMEM: nutrient mixture F-12 supplemented with epidermal growth factor. The morphological and biological features of cultured bulge cells were observed by light microscopy using immunocytochemistry methods.
Background: Alzheimer's disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model.
View Article and Find Full Text PDF