Publications by authors named "Bambi J Grilley"

Interleukin-15 (IL-15) promotes the survival of T lymphocytes and enhances the antitumour properties of chimeric antigen receptor (CAR) T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy. Glypican-3 (GPC3) is expressed in a group of solid cancers, and here we report the evaluation in humans of the effects of IL-15 co-expression on GPC3-expressing CAR T cells (hereafter GPC3 CAR T cells). Cohort 1 patients ( NCT02905188 and NCT02932956 ) received GPC3 CAR T cells, which were safe but produced no objective antitumour responses and reached peak expansion at 2 weeks.

View Article and Find Full Text PDF

We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion.

View Article and Find Full Text PDF

Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy. Glypican-3 (GPC3) is expressed in a group of solid cancers, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cells are an emerging therapy for refractory lymphomas. Clonal hematopoiesis (CH), the preferential outgrowth of mutated bone marrow progenitors, is enriched in lymphoma patients receiving CAR-T cells. CAR-T therapy requires conditioning chemotherapy and often induces systemic inflammatory reactions, both of which have been shown to promote expansion of CH clones.

View Article and Find Full Text PDF

The field of regenerative medicine, including cellular immunotherapies, is on a remarkable growth trajectory. Dozens of cell-, tissue- and gene-based products have received marketing authorization worldwide while hundreds-to-thousands are either in preclinical development or under clinical investigation in phased clinical trials. However, the promise of regenerative therapies has also given rise to a global industry of direct-to-consumer offerings of prematurely commercialized cell and cell-based products with unknown safety and efficacy profiles.

View Article and Find Full Text PDF

We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells.

View Article and Find Full Text PDF

Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron').

View Article and Find Full Text PDF

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies.

View Article and Find Full Text PDF

Purpose: Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen-specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape.

Patients And Methods: We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1.

View Article and Find Full Text PDF

Purpose: Chimeric antigen receptor (CAR) T-cell therapy of B-cell malignancies has proved to be effective. We show how the same approach of CAR T cells specific for CD30 (CD30.CAR-Ts) can be used to treat Hodgkin lymphoma (HL).

View Article and Find Full Text PDF

Adoptive transfer of virus-specific T cells (VSTs) has been shown to be safe and effective in stem cell transplant recipients. However, the lack of virus-experienced T cells in donor cord blood (CB) has prevented the development of ex vivo expanded donor-derived VSTs for recipients of this stem cell source. Here we evaluated the feasibility and safety of ex vivo expansion of CB T cells from the 20% fraction of the CB unit in pediatric patients receiving a single CB transplant (CBT).

View Article and Find Full Text PDF

Purpose Improvement of cure rates for patients treated with allogeneic hematopoietic stem-cell transplantation (HSCT) will require efforts to decrease treatment-related mortality from severe viral infections. Adoptively transferred virus-specific T cells (VSTs) generated from eligible, third-party donors could provide broad antiviral protection to recipients of HSCT as an immediately available off-the-shelf product. Patient and Methods We generated a bank of VSTs that recognized five common viral pathogens: Epstein-Barr virus (EBV), adenovirus (AdV), cytomegalovirus (CMV), BK virus (BKV), and human herpesvirus 6 (HHV-6).

View Article and Find Full Text PDF

Adoptive transfer of donor-derived T lymphocytes expressing a safety switch may promote immune reconstitution in patients undergoing haploidentical hematopoietic stem cell transplant (haplo-HSCT) without the risk for uncontrolled graft versus host disease (GvHD). Thus, patients who develop GvHD after infusion of allodepleted donor-derived T cells expressing an inducible human caspase 9 (iC9) had their disease effectively controlled by a single administration of a small-molecule drug (AP1903) that dimerizes and activates the iC9 transgene. We now report the long-term follow-up of 10 patients infused with such safety switch-modified T cells.

View Article and Find Full Text PDF

Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective.

View Article and Find Full Text PDF

Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant.

View Article and Find Full Text PDF