We have previously shown that the PDGFbeta receptor uses a classical GPCR-mediated pathway in order to induce efficient activation of p42/p44 MAPK in response to PDGF. We therefore, considered the possibility that GTPase accelerating proteins (RGS proteins), which regulate GPCR signalling, modulate PDGFbeta receptor-mediated signal transmission. Several lines of evidence were obtained to support functional interaction between the PDGFbeta receptor and RGS12 in HEK 293 and airway smooth muscle cells.
View Article and Find Full Text PDFEarly conception of G-protein-coupled receptor (GPCR) and receptor tyrosine kinase (RTK) signaling pathways was that each represented distinct and linear modules that converged on downstream targets, such as p42/p44 mitogen-activated protein kinase (MAPK). It has now become clear that this is not the case and that multiple levels of cross-talk exist between both receptor systems at early points during signaling events. In recent years, it has become apparent that transactivation of receptor tyrosine kinases by GPCR agonists is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases.
View Article and Find Full Text PDFWe report here that the nerve growth factor (NGF) and lysophosphatidate (LPA) receptor signaling systems interact to regulate the p42/p44 MAPK pathway in PC12 cells. This is based upon several lines of evidence. First, the treatment of PC12 cells, which express LPA(1) receptors, with a sub-maximal concentration of LPA and NGF induced synergistic activation of p42/p44 MAPK.
View Article and Find Full Text PDFThe inhibitory gamma subunit of the retinal photoreceptor type 6 cGMP phosphodiesterase (PDEgamma) is phosphorylated by G-protein-coupled receptor kinase 2 on threonine 62 and regulates the epidermal growth factor- dependent stimulation of p42/p44 mitogen-activated protein kinase in human embryonic kidney 293 cells. We report here that PDEgamma is in a pre-formed complex with c-Src and that stimulation of cells with epidermal growth factor promotes the association of GRK2 with this complex. c-Src has a critical role in the stimulation of the p42/p44 mitogen-activated protein kinase cascade by epidermal growth factor, because c-Src inhibitors block the activation of this kinase by the growth factor.
View Article and Find Full Text PDFPlatelet-derived growth factor (PDGF) and sphingosine 1-phosphate (S1P) act via PDGF beta receptor-S1P(1) receptor complexes in airway smooth muscle cells to promote mitogenic signaling. Several lines of evidence support this conclusion. First, both receptors were co-immunoprecipitated from cell lysates with specific anti-S1P(1) antibodies, indicating that they form a complex.
View Article and Find Full Text PDF