Publications by authors named "Balu Chopade"

Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites.

View Article and Find Full Text PDF

With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention.

View Article and Find Full Text PDF

Plant viruses are responsible for nearly 47 % of all crop losses brought by plant diseases, which have a considerable negative impact on agricultural output. Nanoparticles have the potential to greatly raise agricultural output due to their wonderful applications in the fields of highly sensitive biomolecular detection, disease diagnostics, antimicrobials, and therapeutic compounds. The application of nanotechnology in plant virology is known as nanophytovirology, and it involves biostimulation, drug transport, genetic manipulation, therapeutic agents, and induction of plant defenses.

View Article and Find Full Text PDF

Human monkeypox virus (hMpoxV) is of zoonotic origin and is closely related to the once-dreaded smallpox virus. It is largely endemic to the African continent but has moved out of the endemic regions as sporadic clusters in the past 20 years, raising concerns worldwide. Human Mpox is characterized by a mild to severe, self-limiting infection, with mortality ranging from less than 1% to up to 10% during different outbreaks caused by different clades of MpoxV.

View Article and Find Full Text PDF

Background: Biogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa).

Methods: bAgNPs were synthesized using Acinetobacter sp.

View Article and Find Full Text PDF

Bacteriogenic synthesis of metal nanoparticles is ecofriendly and greatly influenced by physico-chemical reaction parameters with respect to shape and size. Thus, present work aimed to synthesize and optimization of bacteriogenic gold nanoparticles (AuNPs) and study their antioxidant activity. sp.

View Article and Find Full Text PDF

Plasmid curing is the process of obviating the plasmid encoded functions such as antibiotic resistance, virulence, degradation of aromatic compounds, etc. in bacteria. Several plasmid curing agents have been reported in literature, however, no plasmid curing agent can eliminate all plasmids from different hosts.

View Article and Find Full Text PDF

Acinetobacter baumannii has emerged as one of the major nosocomial pathogens implicated in variety of severe infections and mortality. It is rapidly developing multi-drug resistance and also possesses surface colonization ability, which make it most difficult to treat through traditional antibiotics. This is an extensive study to describe the antibacterial activity of bacteriagenic silver nanoparticles (AgNPs) against A.

View Article and Find Full Text PDF

Synthesis of nanoparticles is an enzymatic reduction process in microorganisms. In the present study, a protein, lignin peroxidase has been purified by DEAE-Cellulose anion exchange chromatography and Biogel P-150 gel filtration chromatography from the cell suspension of Acinetobacter sp. SW30 responsible for the synthesis of gold nanoparticles (AuNP) and selenium nanoparticles (SeNP).

View Article and Find Full Text PDF

Metals present in environment render the bacteria to attain certain resistance machinery to survive, one of which is transformation of metal ions to nano forms. Various enzymes and proteins have been suggested to play significant role in synthesis of silver nanoparticles (AgNPs) in bacteria. In present study, we have purified lignin peroxidase from secreted enzyme extract of Acinetobacter sp.

View Article and Find Full Text PDF

The aim of this study was to synthesize selenium nanoparticles (SeNPs) using cell suspension and total cell protein of sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells.

View Article and Find Full Text PDF

Cell biomass and metal salt concentration have great influence on morphology of biosynthesized nanoparticle. The aim of present study was to evaluate the effect of varying cell density and gold salt concentrations on synthesis of nanoparticles and its morphology, which has not been studied in bacteria till now. When cells of sp.

View Article and Find Full Text PDF

Purpose: Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics.

View Article and Find Full Text PDF

Biofilms are the cause of 80% of microbial infections. species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases.

View Article and Find Full Text PDF

Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 (-2)) and selenate (SeO4 (-2)). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color.

View Article and Find Full Text PDF

Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have gained immense importance recently as drug nanocarriers due to easy multifunctionalization, simultaneous targeting, imaging and cancer hyperthermia. Herein, we report a novel nanomedicine comprising of IONPs core functionalized with a potent anticancer bioactive principle, diosgenin from medicinal plant Dioscorea bulbifera via citric acid linker molecule. IONPs were synthesized by reverse co-precipitation and characterized using field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS).

View Article and Find Full Text PDF

With the advances in nanoscience and nanotechnology the interest of researchers has expanded to interdisciplinary domain like bio-medical applications. Among such domains, one of the most important areas explored meticulously is the development of promising solutions in diabetes therapeutics. The disease associated with metabolic disorder, is one of the major challenges, due to its ever-increasing number of patients.

View Article and Find Full Text PDF

Fine combination of natural botanical extracts to evaluate and maximize their medicinal efficacy has been studied for long. However, their limited shelf-life, complicated extraction protocols, and difficult compositional analysis have always been a problem. It is due to this that such materials take time to convert them into a proper pharmaceutical technology or product.

View Article and Find Full Text PDF

Preventing chronic hyperglycaemia and associated oxidative stress is utmost important for the treatment and management of Type 2 Diabetes Mellitus (T2DM). Here we report the role of different size surface defect rich ZnO quantum dots (D-QDs) for inhibiting metabolic enzymes and scavenging free radicals, which plays a key role in reducing hyperglycaemia and oxidative stress. Quantitative analysis of radical scavenging and metabolic enzyme inhibition activity of D-QDs demonstrates a size dependent behaviour, where D-QDs with a smaller diameter shows superior activity compared to larger size D-QDs.

View Article and Find Full Text PDF

Resistance among mycobacteria leading to multidrug-resistant and extensively drug-resistant tuberculosis is a major threat. However, nanotechnology has provided new insights in drug delivery and medicine development. This is the first comparative report to determine the activity of chemically and biologically synthesised silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) against mycobacteria.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles.

View Article and Find Full Text PDF

Acinetobacter radioresistens is an important member of genus Acinetobacter from a clinical point of view. In the present study, we report that a clinical isolate of A. radioresistens releases outer membrane vesicles (OMVs) under in vitro growth conditions.

View Article and Find Full Text PDF

Effective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus.

View Article and Find Full Text PDF

Background & Objectives: Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form.

View Article and Find Full Text PDF