Publications by authors named "Balu B"

Background: Gypsy "Narikuravars" constituted separate sociocultural groups having distinct cultures, customs, traditions, and lifestyles. Oral health-seeking behavior of this group remains to be an ignored part. This study aims to assess the oral hygiene practices and knowledge on periodontal diseases and therapy among Gypsy Narikuravars in Puducherry.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed 365 cases of metastatic bone tumors over two decades, focusing on clinical features and primary cancer sites in cases of unknown origin.
  • The spine was found to be the most commonly affected area, and metastatic disease was the initial presentation for 69.5% of patients, with the primary cancer identified in only 220 cases.
  • Immunohistochemistry (IHC) helped determine the likely origin of tumors in nearly 27.4% of patients with unknown primary sites, highlighting the significance of thorough testing for effective treatment strategies.
View Article and Find Full Text PDF

The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation, , and rotation, , are small compared to unity.

View Article and Find Full Text PDF

This theoretical analysis quantifies the effect of coupled ionic fluxes on the charging dynamics of an electrochemical cell. We consider a model cell consisting of a concentrated, binary electrolyte between parallel, blocking electrodes, under a suddenly applied DC voltage. It is assumed that the magnitude of the applied voltage is small compared to the thermal voltage scale, RT/F, where R is the universal gas constant, T is the temperature and F is the Faraday's constant.

View Article and Find Full Text PDF

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle.

View Article and Find Full Text PDF

Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500.

View Article and Find Full Text PDF

In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans.

View Article and Find Full Text PDF

Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P.

View Article and Find Full Text PDF

The genome sequence of the human malaria parasite, Plasmodium falciparum, was released almost a decade ago. A majority of the Plasmodium genome, however, remains annotated to code for hypothetical proteins with unknown functions. The introduction of forward genetics has provided novel means to gain a better understanding of gene functions and their associated phenotypes in Plasmodium.

View Article and Find Full Text PDF

Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite.

View Article and Find Full Text PDF

A majority of the Plasmodium falciparum genome codes for genes with unknown functions, which presents a major challenge to understanding the parasite's biology. Large-scale functional analysis of the parasite genome is essential to pave the way for novel therapeutic intervention strategies against the disease and yet difficulties in genetic manipulation of this deadly human malaria parasite have been a major hindrance for functional analysis of its genome. Here, we used a forward functional genomic approach to study P.

View Article and Find Full Text PDF

Superhydrophobic paper substrates were patterned with high surface energy black ink using commercially available desktop printing technology. The shape and size of the ink islands were designed to control the adhesion forces on water drops in two directions, parallel ('drag-adhesion') and perpendicular ('extensional-adhesion') to the substrate. Experimental data on the adhesion forces shows good agreement with classical models for 'drag' (Furmidge equation) and 'extensional' adhesion (modified Dupré equation).

View Article and Find Full Text PDF

Background: Much of the Plasmodium falciparum genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the Plasmodium genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the Plasmodium genome.

View Article and Find Full Text PDF

Background: Cloning of parasites by limiting dilution is an essential and rate-limiting step in many aspects of malaria research including genomic and genetic manipulation studies. The standard Giemsa-stained blood smears to detect parasites is time-consuming, whereas the more sensitive parasite lactate dehydrogenase assay involves multiple steps and requires fresh reagents. A simple PCR-based method was therefore tested for parasite detection that can be adapted to high throughput studies.

View Article and Find Full Text PDF

Strict regulation of gene expression is critical for the development of the malaria parasite within multiple host cell types. However, much remains unexplored regarding gene regulation in Plasmodium falciparum with only a few components of the gene regulation machinery identified thus far. Better characterization of transcript structures with precise mapping of transcript ends will greatly aid in the search of conserved regulatory sequences in the genome.

View Article and Find Full Text PDF

Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'.

View Article and Find Full Text PDF

The malaria agent Plasmodium falciparum is predicted to export a "secretome" of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested.

View Article and Find Full Text PDF

Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation approach for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) probes. The deposition allows reproducible and uniform coating, which is essential for many analytical applications of micro- and nanoelectrodes such as, e.

View Article and Find Full Text PDF

Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites.

View Article and Find Full Text PDF

Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor.

View Article and Find Full Text PDF