Collaborative robots (in short: cobots) have the potential to assist workers with physically or cognitive demanding tasks. However, it is crucial to recognize that such assistance can have both positive and negative effects on job quality. A key aspect of human-robot collaboration is the interdependence between human and robotic tasks.
View Article and Find Full Text PDFThe objective of this study was to assess the efficacy and user's impression of an arm-support exoskeleton in complex and realistic ceiling construction tasks. 11 construction workers performed 9 tasks. We determined objective and subjective efficacy of the exoskeleton by measuring shoulder muscle activity and perceived exertion.
View Article and Find Full Text PDFExoskeleton use in day-to-day plastering may face several challenges. Not all plasterer's tasks comprise of movements that will be supported by the exoskeleton and might even be hindered. Furthermore, use in practice might be jeopardised by time pressure, colleagues being negative, discomfort, or any other hindrance of the exoskeleton.
View Article and Find Full Text PDFIn this review we address the human in human robot collaboration (HRC). Although there are different hypotheses on potential effects of HRC on job quality, defined as the quality of the working environment and its effect on the employee's well-being, a comprehensive theory is still lacking. How does HRC influence job quality on an individual level and how can we adapt HRC to boost positivity at work? We identified four job quality related factors that are of relevance in HRC: (1) Cognitive Workload, (2) Collaboration Fluency, (3) Trust, and (4) Acceptance and Satisfaction.
View Article and Find Full Text PDFAims/hypothesis: The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point.
Methods: A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing.
Damage and regeneration naturally occur in the peripheral nervous system. The neurotropic B vitamins thiamine (B1), pyridoxine (B6), and cobalamin (B12) are key players, which maintain the neuronal viability in different ways. Firstly, they constantly protect nerves against damaging environmental influences.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2020
Purpose: To elucidate the collagen structure in the Descemet membrane (DM) of the human cornea and to characterize its rearrangement in patients with endothelial corneal dystrophies.
Methods: Corneas from nine human donors and dystrophic DMs removed from 16 affected eyes of 13 patients by endothelial keratoplasty (DMEK) were investigated using a correlative RT-qPCR and label-free two-channel multiphoton microscopy (MPM) setup. Although collagen formation was visualized by second harmonic generation, the cellular structure was determined by autofluorescence.
The number one cause of disability in the world is low-back pain, with mechanical loading as one of the major risk factors. To reduce mechanical loading, exoskeletons have been introduced in the workplace. Substantial reductions in back muscle activity were found when using the exoskeleton during static bending and manual materials handling.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2021
Mitochondrial dynamics are important for glucose-stimulated insulin secretion in pancreatic beta cells. The mitochondrial elongation factor MiD51 has been proposed to act as an anchor that recruits Drp1 from the cytosol to the outer mitochondrial membrane. Whether MiD51 promotes mitochondrial fusion by inactivation of Drp1 is a controversial issue.
View Article and Find Full Text PDFPurpose Determinants of successfully introducing passive exoskeletons in the working environment to decrease mechanical loading on the back, are acceptability of the device to management and employees, including self-efficacy of employees when using the device. Therefore, the aim of this study was to assess self-efficacy of employees with low-back pain when using an exoskeleton and the acceptability of such a device to these employees and their managers. Methods We used a mixed method approach.
View Article and Find Full Text PDFPurpose Low back pain (LBP) remains a major worldwide healthcare issue. Recently, spinal exoskeletons were proposed as a potentially useful solution for LBP prevention and vocational reintegration for people who perform heavy load lifting, repetitive movements or work in prolonged static postures. The purpose of this study was to investigate how patients with LBP respond to the novel passive SPEXOR exoskeleton regarding functional performance, discomfort and general user impression.
View Article and Find Full Text PDFRecently, several spinal exoskeletons were developed with the aim to assist occupational tasks such as load-handling and work in prolonged static postures. While the biomechanical effects of such devices has been well investigated, only limited feedback to the developers is usually provided regarding the subjective perceptions of the end-users. The aim of this study was to present a novel battery of tests, designed to assess functional performance and subjective outcomes during the use of assistive trunk exoskeletons, and to assess its test-retest reliability.
View Article and Find Full Text PDFObjective: The objective of this study was to identify criteria to be considered when developing an exoskeleton for low-back pain patients by exploring the perceptions and expectations of potential end users.
Background: Psychosocial, psychological, physical load, and personality influence incidence of low-back pain. Body-worn assistive devices that passively support the user's trunk, that is exoskeletons, can decrease mechanical loading and potentially reduce low-back pain.
Purpose: Besides mechanical loading of the back, physiological strain is an important risk factor for low-back pain. Recently a passive exoskeleton (SPEXOR) has been developed to reduce loading on the low back. We aimed to assess the effect of this device on metabolic cost of repetitive lifting.
View Article and Find Full Text PDFMitochondrial Ca flux is crucial for the regulation of cell metabolism. Ca entry to the mitochondrial matrix is mediated by VDAC1 and MCU with its regulatory molecules. We investigated hepatocytes isolated from conplastic C57BL/6NTac-mt mice (mtNOD) that differ from C57BL/6NTac mice (controls) by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase, resulting in functional and morphological mitochondrial adaptations.
View Article and Find Full Text PDFGlucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose.
View Article and Find Full Text PDFThe objective of this study was to assess how wearing a passive trunk exoskeleton affects metabolic costs, movement strategy and muscle activation during repetitive lifting and walking. We measured energy expenditure, kinematics and muscle activity in 11 healthy men during 5 min of repetitive lifting and 5 min of walking with and without exoskeleton. Wearing the exoskeleton during lifting, metabolic costs decreased as much as 17%.
View Article and Find Full Text PDFAim: Mitochondrial DNA (mtDNA) mutations can negatively influence lifespan and organ function. More than 250 pathogenic mtDNA mutations are known, often involving neurological symptoms. Major neurodegenerative diseases share key etiopathogenetic components ie mtDNA mutations, mitochondrial dysfunction and oxidative stress.
View Article and Find Full Text PDFIn the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons.
View Article and Find Full Text PDFThe objective of this study was to assess the effect of a passive trunk exoskeleton on functional performance for various work related tasks in healthy individuals. 18 healthy men performed 12 tasks. Functional performance in each task was assessed based on objective outcome measures and subjectively in terms of perceived task difficulty, local and general discomfort.
View Article and Find Full Text PDFIt is estimated that approximately 50% of patients with diabetes mellitus suffer from polyneuropathy, which is frequently diagnosed too late. Consequently, the question arises whether imaging procedures of the eye, namely optical coherence tomography of the retina and confocal microscopy of the cornea are suitable for the diagnostics and follow-up control of neurodegenerative changes in patients with diabetes mellitus. De Clerck and co-workers could demonstrate this by a systematic review of studies.
View Article and Find Full Text PDFKlin Monbl Augenheilkd
December 2016
Patients with diabetes mellitus suffer from late damage, including microvascular and macrovascular complications and diabetic polyneuropathy, even though blood glucose is well controlled and the HbA1c value normalised. Peripheral nerves are affected, and when these are damaged, this can result in disturbed sensation and pain. Such nerves are mainly Aδ und C fibres, which are present in the skin, but also in the subbasal nerve plexus of the cornea.
View Article and Find Full Text PDFMitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase.
View Article and Find Full Text PDFBackground: Mitochondrial DNA (mtDNA) encodes for the respiratory chain proteins. Genetic alterations in mtDNA have been described during aging and linked to impaired hematopoiesis.
Materials And Methods: We investigated two novel conplastic mouse strains harboring a mitochondrial nt7778 G/T polymorphism leading to an amino acid exchange in respiratory chain complex V.