Publications by authors named "Balthasar N"

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVH population, melanocortin-4 receptor-expressing (PVH) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVH neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVH) neurons, which notably lack MC4Rs, function independently and additively with PVH neurons to account for the totality of PVH neuron-mediated satiety.

View Article and Find Full Text PDF

Melanocortin-4 receptor (Mc4r)-expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology.

View Article and Find Full Text PDF

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS).

View Article and Find Full Text PDF

The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1-3 gene products). There is a wealth of data on expression of Gal1-3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein).

View Article and Find Full Text PDF

Objective: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children.

Methods: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.

View Article and Find Full Text PDF

Abstract Growth hormone secretagogue receptor (GHS-R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS-R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS-R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS-R deficient mice demonstrate that chronic absence of GHS-R signaling is protective against obesity-induced hypertension.

View Article and Find Full Text PDF

A wealth of animal and human studies demonstrate that early life environment significantly influences adult metabolic balance, however the etiology for offspring metabolic misprogramming remains incompletely understood. Here, we determine the effect of maternal diet per se on offspring sex-specific outcomes in metabolic health and hypothalamic transcriptome regulation in mice. Furthermore, to define developmental periods of maternal diet misprogramming aspects of offspring metabolic balance, we investigated offspring physiological and transcriptomic consequences of maternal high-fat/high-sugar diet feeding during pregnancy and/or lactation.

View Article and Find Full Text PDF

SIRT3 is a NAD(+)-dependent deacetylase that regulates the function of numerous mitochondrial proteins with roles in metabolism, oxidative stress, and cell survival. It is emerging as an instrumental regulator of the mitochondrial adaptive responses to stress, including metabolic reprogramming and enhancing antioxidant defense mechanisms. Here, we discuss the role that SIRT3 plays at both a cellular and physiological level and consider its involvement in disease.

View Article and Find Full Text PDF

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined.

View Article and Find Full Text PDF

Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer's disease (AD)-mediated stress.

View Article and Find Full Text PDF

The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear.

View Article and Find Full Text PDF

Melanocortin-4 receptor (MC4R) mutations cause dysregulation of energy balance and hyperinsulinemia. We have used mouse models to study the physiological roles of extrahypothalamic MC4Rs. Re-expression of MC4Rs in cholinergic neurons (ChAT-Cre, loxTB MC4R mice) modestly reduced body weight gain without altering food intake and was sufficient to normalize energy expenditure and attenuate hyperglycemia and hyperinsulinemia.

View Article and Find Full Text PDF

D-Fenfluramine (D-Fen) increases serotonin (5-HT) content in the synaptic cleft and exerts anorexigenic effects in animals and humans. However, the neural circuits that mediate these effects are not fully identified. To address this issue, we assessed the efficacy of D-Fen-induced hypophagia in mouse models with manipulations of several genes in selective populations of neurons.

View Article and Find Full Text PDF

Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons.

View Article and Find Full Text PDF

Within the central nervous system (CNS), the hypothalamus senses and integrates information on the nutrient state of the body. However, the molecular mechanisms translating nutrient sensing into changes in gene expression and, ultimately, nutrient intake remain unclear. A crucial function for the cyclic AMP-response element binding protein (CREB) co-activator CREB-regulated transcription co-activator 2 (CRTC2) in maintaining glucose homeostasis has been shown in the liver.

View Article and Find Full Text PDF

Obesity, due to its associated co-morbidities, including type 2 diabetes and cardiovascular disease, is at the forefront of today's health care concerns. Our need for novel, multifaceted approaches to tackle the global increase of waistlines is urgent, and understanding the physiological processes underlying our vulnerability to weight gain is an important one of them. Evidence for considerable heritability of body weight indicates genetic influences in the susceptibility to our obesogenic environment.

View Article and Find Full Text PDF

Normal food intake and body weight homeostasis require the direct action of leptin on hypothalamic proopiomelanocortin (POMC) neurons. It has been proposed that leptin action requires PI3K activity. We therefore assessed the contribution of PI3K signaling to leptin's effects on POMC neurons and organismal energy balance.

View Article and Find Full Text PDF

Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures.

View Article and Find Full Text PDF

A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown.

View Article and Find Full Text PDF

Forming distinct representations of multiple contexts, places, and episodes is a crucial function of the hippocampus. The dentate gyrus subregion has been suggested to fulfill this role. We have tested this hypothesis by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1, specifically in dentate gyrus granule cells.

View Article and Find Full Text PDF

Recent research has identified a number of genes playing critical roles in the central regulation of energy homeostasis. Subsequently, models of the neurocircuitry regulating energy balance have been suggested, although their physiological relevance remains mostly untested. Using the Cre/loxP system, we can now genetically dissect these neurocircuits and establish the specific roles of these genes in small neuronal subpopulations.

View Article and Find Full Text PDF

Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells.

View Article and Find Full Text PDF

The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors.

View Article and Find Full Text PDF

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity.

View Article and Find Full Text PDF

Leptin, an adipocyte-derived hormone, acts directly on the brain to control food intake and energy expenditure. An important question is the identity of first-order neurons initiating leptin's anti-obesity effects. A widely held view is that most, if not all, of leptin's effects are mediated by neurons located in the arcuate nucleus of the hypothalamus.

View Article and Find Full Text PDF