Publications by authors named "Balsara J"

MicroRNAs (miRNAs) may regulate a number of genes, each of which may have a variety of functions. We utilized an endoarterial biopsy catheter to assess the dysregulation of miRNAs in a porcine shunt model of pulmonary hypertension (PH). Two Yucatan micropigs underwent surgical anastomosis of the left pulmonary artery to the descending aorta.

View Article and Find Full Text PDF

Aim: In paediatrics drugs are prescribed as mg/kg doses to facilitate accurate dosing. Anecdotally, some drugs are prescribed in such a way that the volume to be given is difficult to measure which may lead to inaccuracies and potential for error. Locally, errors have been reported where there has been a misunderstanding of the required dose, especially when decimal points are involved.

View Article and Find Full Text PDF

Buspirone, a partial agonist of 5-hydroxytryptaminelA autoreceptors, preferentially blocks the presynaptic rather than the postsynaptic D2 dopamine (DA) receptors. Behavioural effects of a wide dose range of buspirone were therefore studied in mice. Buspirone at 0.

View Article and Find Full Text PDF

Buspirone, a partial agonist of 5-hydroxytryptamine autoreceptors, selectively blocks presynaptic nigrostriatal D2 dopamine (DA) autoreceptors. At doses which antagonised action of apomorphine in biochemical presynaptic nigrostriatal D2 DA autoreceptor test systems buspirone neither induced catalepsy nor antagonised apomorphine-induced turning behaviour in rats indicating that at these doses buspirone does not block postsynaptic striatal D2 and D1 DA receptors. This study determines whether at high doses buspirone blocks postsynaptic striatal D2 and D1 DA receptors and provides behavioural evidence for selective blockade of presynaptic nigrostriatal D2 DA autoreceptors by smaller doses of buspirone.

View Article and Find Full Text PDF

Dextromethorphan, a noncompetitive blocker of N-methyl-D- aspartate (NMDA) type of glutamate receptor, at 7.5-75 mg/kg, ip did not induce oral stereotypies or catalepsy and did not antagonize apomorphine stereotypy in rats. These results indicate that dextromethorphan at 7.

View Article and Find Full Text PDF

Dextromethorphan, a noncompetitive blocker of the N-methyl-D-aspartate (NMDA) type of glutamate receptor, at 45, 60 and 75 mg/kg, ip doses induced a behavioural syndrome characterised by reciprocal forepaw treading, lateral head-weaving, hind-limb abduction and flat body posture. Such type of behavioural syndrome is induced by 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT) by directly stimulating the central postsynaptic 5-hydroxytryptamine (5-HT, serotonin) receptors of the 5-HT1A type. Pretreatment with buspirone (5, 10 mg/kg, ip) and l-propranolol (10, 20 mg/kg, ip) antagonised the behavioural syndrome induced by 8-OH-DPAT and dextromethorphan.

View Article and Find Full Text PDF

5-hydroxytryptamine (5-HT) inhibits the synthesis and release of dopamine (DA) from rat nigrostriatal DAergic neurons. Dexfenfluramine releases 5-HT from brain 5-HTergic neurons. The present study was undertaken to determine whether dexfenfluramine, through the released 5-HT, modulates the intensity of the behaviours dependent on the functional status of the nigrostriatal DAergic system.

View Article and Find Full Text PDF

Rationale: 5-Hydroxytryptamine, via stimulation of 5-HT 2C receptors, exerts a tonic inhibitory influence on dopaminergic neurotransmission, whereas activation of 5-HT 2A receptors enhances stimulated DAergic neurotransmission. The antidepressant trazodone is a 5-HT 2A/2C receptor antagonist.

Objectives: To evaluate the effect of trazodone treatment on behaviors dependent on the functional status of the nigrostriatal DAergic system.

View Article and Find Full Text PDF

Amantadine, a dopamine agonist is reported to act by releasing dopamine from the dopaminergic nerve terminals as an anti-Parkinsonian drug. In the present behavioural study in the rat, molindone-induced catalepsy and ptosis, which are dopamine dependent-behaviors are reversed by amantadine. Amantadine has also revered molindone-induced inhibition of traction response in mice.

View Article and Find Full Text PDF

1. Radio-ligand binding study has demonstrated that flunarizine has a high affinity for the rat striatal D 2 dopamine (DA) receptors. 2.

View Article and Find Full Text PDF

Abstract : Verapamil at 5, 10 and 20 mg/kg ip did not inhibit the conditioned avoidance response, neither induced catalepsy nor antagonised apomorphine stereotypy in rats indicating that these doses do not block the postsynaptic striatal D 2 and D 1 dopamine (DA) receptors. However, pretreatment with 10 and 20 mg/kg ip verapamil potentiated methamphetamine stereotypy and antagonised catalepsy induced by small doses (0.05 and 0.

View Article and Find Full Text PDF

Metoclopramide (5 to 40 mg/kg, i.p.) induces catalepsy and antagonised apomorphine induced cage climbing behaviour in mice.

View Article and Find Full Text PDF

Pentazocine, a kappa opioid receptor agonist, induced catalepsy in mice suggesting thereby that it might possess postsynaptic striatal D 2 dopamine (DA) receptor blocking activity. However, our other findings, that pentazocine pretreatment did not antagonise the cage climbing behaviour induced by the directly acting DA agonist apomorphine in mice and actually potentiated the stereotyped behaviour induced by the indirectly acting DA agonist methamphetamine in mice, indicate that pentazocine does not possess postsynaptic striatal and mesolimbic D 2 DA receptor blocking activity. Pretreatment with naloxone, an antagonist of opioid receptors, antagonised pentazocine-induced catalepsy.

View Article and Find Full Text PDF

Racemate pentazocine was found to induce stereotyped behaviour (SB) in rats. Pretreatment with haloperidol and alpha-methyl-p-tyrosine significantly antagonised dl-pentazocine induced SB. This indicates that dl-pentazocine induces SB by releasing dopamine (DA) from the nigrostriatal and mesolimbic dopaminergic neurones with resultant activation of the postsynaptic striatal and mesolimbic D2 DA receptors by the released DA.

View Article and Find Full Text PDF

In the present study we have investigated the effect of yohimbine on dopamine-dependent behaviours in rats and mice. Yohimbine (1.25 to 10 mg/kg, ip) failed to block the conditioned avoidance response in rats, to inhibit the traction response in mice and to induce catalepsy in rats and mice.

View Article and Find Full Text PDF

Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

View Article and Find Full Text PDF

Pretreatment with the DAi receptor antagonist ergometrine (10, 20 mg kg-1 i.p.) significantly potentiated methamphetamine stereotypy and facilitated the induction of biting, gnawing or licking behaviour by amantadine.

View Article and Find Full Text PDF

Pretreatment with fenfluramine (5 and 10 mg/kg, ip) in doses which induced head twitches was found to antagonize apomorphine-induced cage climbing behaviour and methamphetamine stereotypy in mice. Since fenfluramine (5 and 10 mg/kg) did not induce catalepsy it indicates that fenfluramine lacks postsynaptic striatal and mesolimbic dopamine receptor blocking activity and it is possible that the fenfluramine-induced enhancement of central 5-hydroxytryptamine neuronal transmission may be responsible for its antagonistic effect on apomorphine-induced climbing behaviour and methamphetamine stereotypy.

View Article and Find Full Text PDF

24 h pretreatment with molindone enhanced the behavioural effects of L-dopa and 5-HTP, precursors of biogenic amines (catecholamines and 5-HT respectively) preferentially deaminated by MAO-A, confirming that a metabolite of molindone inhibits MAO-A. 24 h pretreatment with molindone enhanced the behavioural effects of tryptamine and antagonized reserpine-induced ptosis, and in molindone-pretreated rats L-tryptophan induced behavioural effects, probably because of the MAO-A inhibitory activity exerted by a metabolite of molindone. Since 24 h pretreatment with molindone, unlike 30 min pretreatment with clomipramine, failed to antagonize fenfluramine and p-chloramphetamine-induced behavioural syndromes, it suggests that molindone and/or its metabolites most probably do not exert 5-HT neuronal uptake blocking activity and the potentiation of 5-HTP-induced behavioural syndrome is due to a metabolite's MAO-A inhibitory activity.

View Article and Find Full Text PDF

Pretreatment with the opiate antagonist naloxone, at 1.25-5 mg/kg, increased the intensity of methamphetamine stereotypy, had no effect (over a range of 0.3125-5 mg/kg) on apomorphine stereotypy, and antagonized haloperidol catalepsy in rats at 1.

View Article and Find Full Text PDF