The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3.
View Article and Find Full Text PDFAberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML).
View Article and Find Full Text PDFDendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown.
View Article and Find Full Text PDFTandem affinity purification (TAP) (Pugi ., 2001; Rigaut ., 1999) is a method that uses a tagging approach of a target protein of interest for a two-step purification scheme in order to pull down protein complexes under native conditions and expression levels.
View Article and Find Full Text PDFThe translational regulators Nanos (Nos) and Pumilio (Pum) work together to regulate the morphogenesis of dendritic arborization (da) neurons of the Drosophila larval peripheral nervous system. In contrast, Nos and Pum function in opposition to one another in the neuromuscular junction to regulate the morphogenesis and the electrophysiological properties of synaptic boutons. Neither the cellular functions of Nos and Pum nor their regulatory targets in neuronal morphogenesis are known.
View Article and Find Full Text PDFLoss of FMR1 gene function results in fragile X syndrome, the most common heritable form of intellectual disability. The protein encoded by this locus (FMRP) is an RNA-binding protein that is thought to primarily act as a translational regulator; however, recent studies have implicated FMRP in other mechanisms of gene regulation. We found that the Drosophila fragile X homolog (dFMR1) biochemically interacted with the adenosine-to-inosine RNA-editing enzyme dADAR.
View Article and Find Full Text PDFFragile X syndrome (FXS) is a cognitive disorder caused by silencing of the fragile X mental retardation 1 gene (FMR1). Since the discovery of the gene almost two decades ago, most scientific contributions have focused on identifying the molecular function of the fragile X mental retardation protein (FMRP) and understanding how absence of FMR1 gene expression gives rise to the disease phenotypes. The use of model organisms has allowed rapid progression in the FXS field and has given insight into the molecular basis of the disease.
View Article and Find Full Text PDFFragile X Syndrome is caused by the silencing of the Fragile X Mental Retardation gene (FMR1). Regulating dosage of FMR1 levels is critical for proper development and function of the nervous system and germ line, but the pathways responsible for maintaining normal expression levels are less clearly defined. Loss of Drosophila Fragile X protein (dFMR1) causes several behavioral and developmental defects in the fly, many of which are analogous to those seen in Fragile X patients.
View Article and Find Full Text PDFMonoallelic expression of imprinted genes is generally associated with differential methylation. Methylation may be inherited as the gametic imprinting mark or may be acquired postfertilization. Here, we characterize a differentially methylated region associated with the mouse Cdkn1c gene and find that it is confined to a CpG island that begins 600 bp 5' of the promoter and extends into the transcription unit.
View Article and Find Full Text PDF