Urban Heat Island (UHI) is acknowledged to generate harmful consequences on human health, and it is one of the main anthropogenic challenges to face in modern cities. Due to the urban dynamic complexity, a full microclimate decoding is required to design tailored mitigation strategies for reducing heat-related vulnerability. This study proposes a new method to assess intra-urban microclimate variability by combining for the first time two dedicated monitoring systems consisting of fixed and mobile techniques.
View Article and Find Full Text PDFThis work develops a technology for actuating droplets of any size without the requirement for high voltages or active control systems, which are typically found in competitive systems. The droplet actuation relies on two microelectrodes separated by a variable gap distance to generate an electrostatic gradient. The physical mechanism for the droplet motion is a combination of liquid dielectrophoresis and electrowetting.
View Article and Find Full Text PDFSurgical staff behavior in operating theatres is one of the factors associated with indoor air quality and surgical site infection risk. The aim of this study was to apply an approach including microbiological, particle, and microclimate parameters during two simulated surgical hip arthroplasties to evaluate the influence of staff behavior on indoor air quality. During the first hip arthroplasty, the surgical team behaved correctly, but in the second operation, behavioral recommendations were not respected.
View Article and Find Full Text PDFIn this paper, we use a finite difference time domain solver to simulate the near field optical properties of self-assembled microsphere arrays when exposed to an incoherent light source. Such arrays are typically used for microsphere lithography where each sphere acts as a ball lens, focusing ultraviolet light into an underlying photoresist layer. It is well known that arrays of circular features can be patterned using this technique.
View Article and Find Full Text PDFWe report on the first observation of 'Spoof' Surface Plasmon Polariton (SPP) scattering from surface defects on metal-coated 3D printed, corrugated THz waveguiding surfaces. Surface defects, a result of the printing process, are shown to assist the direct coupling of the incident free-space radiation into a spoof SPP wave; removing the need to bridge the photon momentum gap using knife-edge or prism coupling. The free space characteristics, propagation losses and confinement of the spoof SPPs to the surface are measured, and the results are compared to finite-difference time domain simulations.
View Article and Find Full Text PDFA vector network analyzer-based quasi-optical measurement system that is suitable for mapping electric field intensity and phase near to the surface of terahertz reflective optics is presented. The system uses a fixed five parabolic mirror and transmitter/receiver head arrangement that has the benefit of requiring only the sample to be swept during measurement. The system has been tested with a micromilled aluminum zone plate reflector used as an exemplar structure.
View Article and Find Full Text PDFThe aim of this paper is to describe a multidisciplinary approach including biological and particle monitoring, and microclimate analysis associated with the application of the Computational Fluid Dynamic (CFD). This approach was applied at the Palatina historical library in Parma. Monitoring was performed both in July and in December, in the absence of visitors and operators.
View Article and Find Full Text PDFBuild Simul
December 2011
Airflow and ventilation are particularly important in healthcare rooms for controlling thermo-hygrometric conditions, providing anaesthetic gas removal, diluting airborne bacterial contamination and minimizing bacteria transfer airborne. An actual hospitalization room was the investigate case study. Transient simulations with computational fluid dynamics (CFD), based on the finite element method (FEM) were performed to investigate the efficiency of the existing heating, ventilation and air-conditioning (HVAC) plant with a variable air volume (VAV) primary air system.
View Article and Find Full Text PDFThe THz spectrum lies between microwaves and the mid-infrared, a region that remains largely unexplored mainly due to the bottleneck issue of lacking compact, solid state, emitters and detectors. Here, we report on a novel asymmetric-nanochannel device, known as the self-switching device, which can operate at frequencies up to 2.5 THz for temperature up to 150 K.
View Article and Find Full Text PDFBy using arrays of nanowires with intentionally broken symmetry, we were able to detect microwaves up to 110 GHz at room temperature. This is, to the best of our knowledge, the highest speed that has been demonstrated in different types of novel electronic nanostructures to date. Our experiments showed a rather stable detection sensitivity over a broad frequency range from 100 MHz to 110 GHz.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2002
The transport of glycine, alanine, methionine and alpha amino-isobutyric acid (AIB) was studied on brush border membrane vesicles of Boops salpa, a marine fish. This transport was Na(+)-, Cl(-)- and pH-dependent. In the presence of NaCl, the uptake decreased as the pH increased from 5.
View Article and Find Full Text PDF