Publications by authors named "Balloul J"

The oncolytic virus represents a promising therapeutic strategy involving the targeted replication of viruses to eliminate cancer cells, while preserving healthy ones. Despite ongoing clinical trials, this approach encounters significant challenges. This study delves into the interaction between an oncolytic virus and extracellular matrix mimics (ECM mimics).

View Article and Find Full Text PDF

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids.

View Article and Find Full Text PDF

This work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression.

View Article and Find Full Text PDF

Long-term modelization of cancer as it changes in the human body is a difficult goal, particularly when designing and testing new therapeutic strategies. This becomes even more difficult with metastasis modeling to show chemotherapeutic molecule delivery directly to tumoral cells. Advanced therapeutics, including oncolytic viruses, antibody-based and cell-based therapies are increasing.

View Article and Find Full Text PDF

TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation therapy and platinum-based chemotherapy are standard treatments for lung cancer, but low survival rates are influenced by factors like the patient's health and tumor complexity.
  • Current treatments often fail due to tumor resistance, highlighting the need for precision medicine to enhance patient survival and quality of life.
  • A new patient-derived tumoroid model shows promise in predicting the effectiveness of radiation therapy and cisplatin-based chemotherapy in non-small-cell lung cancer, correlating with actual patient outcomes.
View Article and Find Full Text PDF

Organ-on-chip and tumor-on-chip microfluidic cell cultures represent a fast-growing research field for modelling organ functions and diseases, for drug development, and for promising applications in personalized medicine. Still, one of the bottlenecks of this technology is the analysis of the huge amount of bio-images acquired in these dynamic 3D microenvironments, a task that we propose to achieve by exploiting the interdisciplinary contributions of computer science and electronic engineering. In this work, we apply this strategy to the study of oncolytic vaccinia virus (OVV), an emerging agent in cancer immunotherapy.

View Article and Find Full Text PDF

Patient-derived tumoroid (PDT) has been developed and used for anti-drug screening in the last decade. As compared to other existing drug screening models, a PDT-based in vitro 3D cell culture model could preserve the histological and mutational characteristics of their corresponding tumors and mimic the tumor microenvironment. However, few studies have been carried out to improve the microvascular network connecting the PDT and its surrounding microenvironment, knowing that poor tumor-selective drug transport and delivery is one of the major reasons for both the failure of anti-cancer drug screens and resistance in clinical treatment.

View Article and Find Full Text PDF

Background: Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment.

View Article and Find Full Text PDF

The treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature.

View Article and Find Full Text PDF

The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare.

View Article and Find Full Text PDF

Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport.

View Article and Find Full Text PDF

The delivery of stimulatory signals to dendritic cells (DCs) in the tumor microenvironment could be an effective means to break tumor-induced tolerance. The work presented here evaluates the immunostimulatory properties of pathogen-associated molecular patterns (PAMPs), microbial molecules which bind Toll-like receptors and deliver activating signals to immune cells, when expressed in tumor cells using adenoviral (Ad) vectors. In vitro, transduction of A549 tumor cells with Ad vectors expressing either flagellin from Listeria monocytogenes or P40 protein from Klebsiella pneumoniae induced the maturation of human monocyte-derived DCs in co-cultures.

View Article and Find Full Text PDF

Recombinant vaccinia virus with tumor cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory or toxic molecules. We report the expression of a tumor-specific single-chain antibody on the surface of intracellular mature vaccinia virus particles (IMV). The wild-type p14 externally membrane-associated protein p14 (A27L gene), which is not required for viral binding and replication, was replaced by p14 fusion molecules carrying a single-chain antibody directed against the tumor-associated antigen MUC-1.

View Article and Find Full Text PDF

We designed and evaluated in HLA-class I transgenic mouse models a hepatitis C virus (HCV) T cell-based MVA vectored vaccine expressing three viral antigens known to be targets of potent CD8+- and CD4+-mediated responses. An accelerated (3 week-based) vaccination induced specific CD8+ T cells harboring two effector functions (cytolytic activity - both in vitro and in vivo- and production of IFNgamma) as well as specific CD4+ T cells recognizing all three vaccine antigens. Responses were long lasting (6 months), boostable by a fourth MVA vaccination and in vivo cross-reactive as demonstrated in a surrogate Listeria-based challenge assay.

View Article and Find Full Text PDF

To redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity.

View Article and Find Full Text PDF

DNA vaccines, comprised of plasmid DNA encoding proteins from pathogens, allergens, and tumors, are being evaluated as prophylactic vaccines and therapeutic treatments for infectious diseases, allergies, and cancer; plasmids encoding normal human proteins are likewise being tested as vaccines and treatments for autoimmune diseases. Examples of in vivo prophylaxis and immunotherapy, based on different types of immune responses (humoral and cellular), in a variety of disease models and under evaluation in early phase human clinical trials are presented. Viral vectors continue to show better levels of expression than those achieved by DNA plasmid vectors.

View Article and Find Full Text PDF

Immune responses to tumor-associated antigens are often dampened by a tumor-induced state of immune anergy. Previous work has attempted to overcome tumor-induced T-cell anergy by the direct injection of vectors carrying the genes encoding one of a variety of cytokines. We hypothesised that the polyclonal stimulation of T cells, preferably through the TCR complex, would result in a cascade of cytokines associated with T-cell activation and would be best able to overcome T-cell anergy.

View Article and Find Full Text PDF

The epithelial mucin MUC1 is considered an opportune target antigen for cancer immunotherapy, as it is over-expressed and exhibits aberrant glycosylation in malignant cells. Because dendritic cells (DC) are powerful initiators of immune responses, efforts have focused on tumor antigen-bearing DC as potent cancer vaccines. In this study we have characterized the transduction of monocyte-derived DC with a highly attenuated vaccinia virus vector [modified vaccinia Ankara (MVA)] encoding human MUC1 and the immunostimulatory cytokine IL-2.

View Article and Find Full Text PDF

Polymorphic epithelial mucin, encoded by the MUC1 gene, is present at the apical surface of glandular epithelial cells. It is over-expressed and aberrantly glycosylated in most breast tumors, resulting in an antigenically distinct molecule and a potential target for immunotherapy. This transmembrane protein, when produced by tumor cells, is often cleaved into the circulation, where it is detectable as a tumor marker (CA 15.

View Article and Find Full Text PDF

Intramuscular administration of plasmid expressing full-length human dystrophin in dystrophin-deficient adult mdx mice resulted in humoral and weak specific T cell responses against the human dystrophin protein. Following plasmid injection, human dystrophin was detected in the injected muscles at 7 days, but decreased thereafter. Anti-dystrophin antibodies were found 21 days following plasmid injection, which coincided with transient myositis.

View Article and Find Full Text PDF

Antigen-specific recognition and subsequent destruction of tumor cells is the goal of vaccine-based immunotherapy of cancer. Often, however, tumor antigen-specific cytotoxic T lymphocytes (CTLs) are either not available or in a state of anergy. In addition, MHCI expression on tumor cells is often downregulated.

View Article and Find Full Text PDF