Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca dependence to the mature, Ca-independent, hyper-adhesive state, which predominates in tissues.
View Article and Find Full Text PDFAdhesion between cells and the extracellular matrix is mediated by heterodimeric () integrin receptors that are intracellularly linked to the contractile actomyosin machinery. One of the proteins that control this link is talin, which organizes cytosolic signalling proteins into discrete complexes on β-integrin tails referred to as focal adhesions (FAs). The adapter protein KANK1 binds to talin in the region of FAs known as the adhesion belt.
View Article and Find Full Text PDFModulation of integrin function is required in many physiological and pathological settings, such as angiogenesis and cancer. Integrin allosteric changes, clustering, and trafficking cooperate to regulate cell adhesion and motility on extracellular matrix proteins via mechanisms that are partly defined. By exploiting four monoclonal antibodies recognizing distinct conformational epitopes, we show that in endothelial cells (ECs), the extracellular βI domain, but not the hybrid or I-EGF2 domain of active β1 integrins, promotes their FAK-regulated clustering into tensin 1-containing fibrillar adhesions and impairs their endocytosis.
View Article and Find Full Text PDFThe formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis.
View Article and Find Full Text PDFDesmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a).
View Article and Find Full Text PDFIntegrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions.
View Article and Find Full Text PDFTalin, vinculin, and paxillin are core components of the dynamic link between integrins and actomyosin. Here, we study the mechanisms that mediate their activation and association using a mitochondrial-targeting assay, structure-based mutants, and advanced microscopy. As expected, full-length vinculin and talin are autoinhibited and do not interact with each other.
View Article and Find Full Text PDFVinculin is an essential component of cell adhesion complexes, where it regulates the strength and stability of adhesions. Whilst the role of vinculin in cell motility is well established, it remains unclear how vinculin contributes to other aspects of tissue function. Here we examine the role of vinculin in mammary epithelial cell phenotype.
View Article and Find Full Text PDFCells sense a variety of extracellular cues, including the composition and geometry of the extracellular matrix, which is synthesized and remodeled by the cells themselves. Here, we present the method of Light-Induced Molecular Adsorption of Proteins (LIMAP) using the PRIMO system as a patterning technique to produce micro-patterned extracellular matrix (ECM) substrates using a single or combination of proteins. The method enables printing of ECM patterns in micron resolution with excellent reproducibility.
View Article and Find Full Text PDFCell division involves the tightly coordinated rearrangement of actin and microtubules (MTs). We have previously shown that a member of the family of growth arrest-specific 2-like proteins, GAS2-like 1 (G2L1) regulates actin-MT crosstalk through its associations with plus-end microtubule tip-binding (EB) proteins. Here we show that G2L1 is involved in the regulation of cell division.
View Article and Find Full Text PDFAs cell function and phenotype can be directed by the mechanical characteristics of the surrounding matrix, hydrogels have become important platforms for cell culture systems, with properties that can be tuned by external stimuli, such as divalent cations, enzymatic treatment, and pH. However, many of these stimuli can directly affect cell behavior, making it difficult to distinguish purely mechanical signaling events. This study reports on the development of a hydrogel that incorporates photoswitchable cross-linkers, which can reversibly alter their stiffness upon irradiation with the appropriate wavelength of light.
View Article and Find Full Text PDFCell-matrix interactions and podocyte intercellular junctions are key for maintaining the glomerular filtration barrier. Vinculin, a cytoplasmic protein, couples actin filaments to integrin-mediated cell-matrix adhesions and to cadherin-based intercellular junctions. Here, we examined the role of vinculin in podocytes by the generation of a podocyte-specific knockout mouse.
View Article and Find Full Text PDFThe ability of cells to sense and respond to mechanical signals is vital in development and healthy tissue functioning. Many diseases are related to either changing mechanical properties of the tissue, or changes in the ability of cells to sense mechanical signals. This sensing occurs, in part, at integrin-associated complexes (IACs) that form sites of attachment between the cell and the extracellular matrix (ECM).
View Article and Find Full Text PDFLow-intensity pulsed ultrasound (LIPUS) is a therapy used clinically to promote healing. Using live-cell imaging we show that LIPUS stimulation, acting through integrin-mediated cell-matrix adhesions, rapidly induces Rac1 activation associated with dramatic actin cytoskeleton rearrangements. Our study demonstrates that the mechanosensitive focal adhesion (FA) protein vinculin, and both focal adhesion kinase (FAK, also known as PTK2) and Rab5 (both the Rab5a and Rab5b isoforms) have key roles in regulating these effects.
View Article and Find Full Text PDFGenetic mutations in the SHANK family of proteins are linked to multiple neuropsychiatric disorders including autism spectrum disorders. A study now elucidates critical roles for SHANK in regulating integrin-mediated cell-extracellular matrix adhesion, by sequestering integrin activators.
View Article and Find Full Text PDFFocal adhesions (FAs) are macromolecular complexes that regulate cell adhesion and mechanotransduction. By performing fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photoactivation (FLAP) experiments, we found that the mobility of core FA proteins correlates with their function. Structural proteins such as tensin, talin and vinculin are significantly less mobile in FAs than signaling proteins such as FAK (also known as PTK2) and paxillin.
View Article and Find Full Text PDFCell migration requires coordination between integrin-mediated cell adhesion to the extracellular matrix and force applied to adhesion sites. Talin plays a key role in coupling integrin receptors to the actomyosin contractile machinery, while deleted in liver cancer 1 (DLC1) is a Rho GAP that binds talin and regulates Rho, and therefore actomyosin contractility. We show that the LD motif of DLC1 forms a helix that binds to the four-helix bundle of the talin R8 domain in a canonical triple-helix arrangement.
View Article and Find Full Text PDFIntegrin adhesion complexes (IACs) form mechanochemical connections between the extracellular matrix and actin cytoskeleton and mediate phenotypic responses via posttranslational modifications. Here, we investigate the modularity and robustness of the IAC network to pharmacological perturbation of the key IAC signaling components focal adhesion kinase (FAK) and Src. FAK inhibition using AZ13256675 blocked FAK(Y397) phosphorylation but did not alter IAC composition, as reported by mass spectrometry.
View Article and Find Full Text PDFThe link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation.
View Article and Find Full Text PDFExternal forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment.
View Article and Find Full Text PDFKnowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g.
View Article and Find Full Text PDFCrosstalk between the microtubule (MT) and actin cytoskeletons is fundamental to many cellular processes including cell polarisation and cell motility. Previous work has shown that members of the growth-arrest-specific 2 (GAS2) family mediate the crosstalk between filamentous actin (F-actin) and MTs, but the molecular basis of this process remained unclear. By using fluorescence microscopy, we demonstrate that three members of this family, GAS2-like 1, GAS2-like 2 and GAS2-like 3 (G2L1, G2L2 and G2L3, also known as GAS2L1, GAS2L2 and GAS2L3, respectively) are differentially involved in mediating the crosstalk between F-actin and MTs.
View Article and Find Full Text PDFPrecise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling.
View Article and Find Full Text PDFTalin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1-R13) organized into a compact cluster of four-helix bundles (R2-R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS.
View Article and Find Full Text PDFBackground: Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear.
Results: Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery.