While parathyroid hormone (PTH), calcitonin (CT), and certain prostaglandins (PGs) are known to regulate the metabolism of both osteogenic and osteolytic cells of the adult skeleton through an adenosine 3', 5'-monophosphate-dependent mechanism, little is known about the development of this hormonally mediated response in embryonic skeletal tissues. In the present study, the responsiveness of embryonic skeletal elements to PTH and PGE2 was examined during various stages of development utilizing cAMP concentrations as an indicator of hormone-receptor interaction. The cytology of the limb skeletal system was examined also at each stage tested in order to compare the differentiated cellular phenotypes with their hormonal responsiveness.
View Article and Find Full Text PDFEffects of prostaglandins (PGs) on accumulation of cyclic AMP (cAMP) in the presence of a phosphodiesterase inhibitor were investigated in cells isolated from avian limb buds at various stages of development. Cells were responsive to PGE2 at the earliest stage investigated (stage 20-21) which was well in advance of specific cytodifferentiation of limb tissues. At three later stages (24-25; 26-28; 30-32), the responsiveness of cells isolated from the developing skeletal anlagen of the limb progressively increased coincident with the differentiation and maturation of the cartilage phenotype.
View Article and Find Full Text PDFThe developing chick limb was studied to determine the ability of parathyroid hormone (PTH) and prostaglandin E2 (PGE2) to increase intracellular cyclic AMP (cAMP) during various stages of development. All developmental stages examined (stages 20-21, 24-25, and 26-28) responded to PGE2 when the cells were assayed immediately following the removal of the limbs from the embryos. In contrast, only stage 26-28 limb cells responded to PTH when assayed in a similar manner.
View Article and Find Full Text PDF