Efficient search in vast combinatorial spaces, such as those of possible action sequences, linguistic structures, or causal explanations, is an essential component of intelligence. Is there any computational domain that is flexible enough to provide solutions to such diverse problems and can be robustly implemented over neural substrates? Based on previous accounts, we propose that a Darwinian process, operating over sequential cycles of imperfect copying and selection of neural informational patterns, is a promising candidate. Here we implement imperfect information copying through one reservoir computing unit teaching another.
View Article and Find Full Text PDF