Complete panicle exsertion (CPE) is an economically important quantitative trait that contributes to grain yield in rice. We deployed an integrated approach for understanding the molecular mechanism of CPE using a stable ethyl methanesulfonate mutant line, CPE-109 of the Samba Mahsuri (SM) variety of rice (Oryza sativa), which exhibits CPE. Two consistent genomic regions were identified for CPE through quantitative trait locus (QTL) mapping [qCPE-4 (28.
View Article and Find Full Text PDFBy deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction.
View Article and Find Full Text PDFTo create novel variants for morphological, physiological, and biotic stress tolerance traits, induced mutations were created using Ethyl Methane Sulphonate (EMS) in the background of Samba Mahsuri (BPT 5204), a popular and mega rice variety of India. A population derived from 10, 500 M1 plants and their descendants were phenotyped for a wide range of traits leading to the identification of 124 mutants having variations in key agro-morphological traits, and 106 mutants exhibiting variation for physiological traits. Higher yield is the ultimate goal of crop improvement and we identified 574 mutants having higher yield compared to wild type by having better yield attributing traits.
View Article and Find Full Text PDFYellow stem borer (YSB), (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice-YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm.
View Article and Find Full Text PDFNorth-East (NE) India, the probable origin of rice has diverse genetic resources. Many rice landraces of NE India were not yet characterized for blast resistance. A set of 232 landraces of NE India, were screened for field resistance at two different hotspots of rice blast, viz.
View Article and Find Full Text PDF