Publications by authors named "Baleva M"

Background: Previous studies have assumed that a materialistic value orientation is correlates with personality traits such as honesty, neuroticism, and agreeableness. Less is known about the relationship between features of a materialistic orientation such as acquisition centrality, acquisition as the pursuit of happiness, and possession-defined success, and the Dark Triad traits. This article presents a study on the relationship between materialism, the Dark Triad traits (Machiavellianism, narcissism, and psychopathy), and money management.

View Article and Find Full Text PDF

Compaction of nucleic acids, namely DNA and RNA, determines their functions and involvement in vital cell processes including transcription, replication, DNA repair and translation. However, experimental probing of the compaction of nucleic acids is not straightforward. In this study, we suggest an approach for this probing using low-frequency Raman spectroscopy.

View Article and Find Full Text PDF

Mitochondria carry out various vital roles in eukaryotic cells, including ATP energy synthesis, the regulation of apoptosis, Fe-S cluster formation, and the metabolism of fatty acids, amino acids, and nucleotides. Throughout evolution, mitochondria lost most of their ancestor's genome but kept the replication, transcription, and translation machinery. Protein biosynthesis in mitochondria is specialized in the production of highly hydrophobic proteins encoded by mitochondria.

View Article and Find Full Text PDF

The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses.

View Article and Find Full Text PDF

Vaccination against the SARS-Cov-2 virus is an effective way to protect against the disease and the severe course of COVID-19. Forty-nine fully vaccinated with mRNA vaccines (BNT162b2 or mRNA-1273) SARS-CoV-2 infection-naïve volunteers aged 33-89 were enrolled in the study. Evaluation of the cellular and humoral immune response was performed within 1 to 3 months (T1) and 6-9 months (T2) after the second injection, and within 2-3 months (T3) after a booster dose.

View Article and Find Full Text PDF

Protein biosynthesis in mitochondria is tightly coupled with assembly of inner membrane complexes and therefore must be coordinated with cytosolic translation of the mRNAs corresponding to the subunits which are encoded in the nucleus. Molecular mechanisms underlying the regulation of mitochondrial translation remain unclear despite recent advances in structural biology. Until now, only one translational regulator of protein biosynthesis in mammalian mitochondria is known-protein TACO1, which regulates translation of COI mRNA.

View Article and Find Full Text PDF

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1.

View Article and Find Full Text PDF

Mitochondria are energy producing organelles of the eukaryotic cell, involved in the synthesis of key metabolites, calcium homeostasis and apoptosis. Protein biosynthesis in these organelles is a relic of its endosymbiotic origin. While mitochondrial translational factors have homologues among prokaryotes, they possess a number of unique traits.

View Article and Find Full Text PDF

Mitochondria are essential organelles of eukaryotic cells capable of aerobic respiration. They contain circular genome and gene expression apparatus. A mitochondrial genome of baker's yeast encodes eight proteins: three subunits of the cytochrome c oxidase (Cox1p, Cox2p, and Cox3p), three subunits of the ATP synthase (Atp6p, Atp8p, and Atp9p), a subunit of the ubiquinol-cytochrome c oxidoreductase enzyme, cytochrome b (Cytb), and mitochondrial ribosomal protein Var1p.

View Article and Find Full Text PDF

Common variable immune deficiency (CVID) accounts for approximately 20% of all cases of primary immune deficiencies, and is characterized by low serum levels of IgG, IgA, and/or IgM. The diagnosis is usually made between 20 and 40 years of age, sometimes earlier. CVID patients are divided into two major groups based on complications observed: 1 group consists of patients with predominant infections, and 2 group includes patients with inflammatory and/or hematological complications, such as lymphadenopathy, splenomegaly, autoimmune cytopenia, enteropathy, and/or granulomatous conditions.

View Article and Find Full Text PDF

Autosomal dominant hyper-IgE syndrome (AD-HIES) is a rare disease described in 1966. It is characterized by severe dermatitis, a peculiar face, frequent infections, extremely high levels of serum IgE and eosinophilia, all resulting from a defect in the gene. A variety of mutations in the SH2 and DNA-binding domain have been described, and several studies have searched for associations between the severity of the clinical symptoms, laboratory findings, and the type of genetic alteration.

View Article and Find Full Text PDF

Mitochondria are obligate organelles of most eukaryotic cells that perform many different functions important for cellular homeostasis. The main role of mitochondria is supplying cells with energy in a form of ATP, which is synthesized in a chain of oxidative phosphorylation reactions on the organelle inner membrane. It is commonly believed now that mitochondria have the endosymbiotic origin.

View Article and Find Full Text PDF

Mitochondrial genomes code for several core components of respiratory chain complexes. Thus, mitochondrial translation is of great importance for the organelle as well as for the whole cell. In yeast, mitochondrial translation initiation factor 3, Aim23p, is not essential for the organellar protein synthesis; however, its absence leads to a significant quantitative imbalance of the mitochondrial translation products.

View Article and Find Full Text PDF

The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date.

View Article and Find Full Text PDF

Mitochondria are essential organelles of eukaryotic cell that provide its respiratory function by means of the electron transfer chain. Expression of mitochondrial genes is organized in a bacterial-like manner; however multiple evolutionary differences are observed between the two systems, including translation initiation machinery. This review is dedicated to the mitochondrial translation initiation factor 3 (IF3mt), which plays a key role in the protein synthesis in mitochondria.

View Article and Find Full Text PDF

After billions of years of evolution, mitochondrion retains its own genome, which gets expressed in mitochondrial matrix. Mitochondrial translation machinery rather differs from modern bacterial and eukaryotic cytosolic systems. Any disturbance in mitochondrial translation drastically impairs mitochondrial function.

View Article and Find Full Text PDF

Mitochondria are the organelles of eukaryotic cells responsible for the ATP production by means of the electron transfer chain (ETC). Its work is under strict genetic control providing the correct assembly of the enzyme complexes and the interface to adapt the energetic demands of the cell to the environment. These mechanisms are particularly developed in the cells with high energy consumption, like neurons and myocytes.

View Article and Find Full Text PDF

Protein biosynthesis in mitochondria is organized in a bacterial manner. However, during evolution, mitochondrial translation mechanisms underwent many organelle-specific changes. In particular, almost all mitochondrial translation factors, being orthologous to bacterial proteins, are characterized by some unique elements of primary or secondary structure.

View Article and Find Full Text PDF

The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, the ribosome dissociates into subunits which is necessary for its further involvement into new initiation step.

View Article and Find Full Text PDF

In yeast, the import of tRNA with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding.

View Article and Find Full Text PDF

Background: The patient's immune response is one of the major factors influencing HBV eradication or chronification, and it is thought to be responsible for the treatment success.

Aim: Our study aimed to investigate whether cellular defense mechanisms are associated with the course of HBV infection (spontaneous recovery [SR] or chronification [CHB]) and with the therapeutic approach.

Patients And Methods: A total of 139 patients (118 with CHB, 21 SR) and 29 healthy individuals (HI) were immunophenotyped by flowcytometry.

View Article and Find Full Text PDF

Mitochondrial genomes of many eukaryotic organisms do not code for the full tRNA set necessary for organellar translation. Missing tRNA species are imported from the cytosol. In particular, one out of two cytosolic lysine tRNAs of the yeast Saccharomyces cerevisiae is partially internalized by mitochondria.

View Article and Find Full Text PDF

Introduction: Selective IgA deficiency (IgAD) is the most prevalent type of primary immune deficiencies, but partial IgA deficiency is even more common. Addison's disease is a rare condition associated with primary adrenal insufficiency due to infection or autoimmune destruction of the adrenals. The association between IgA deficiency and Addison's disease is very rare.

View Article and Find Full Text PDF

The levels of antibodies to cardiolipin and β2-glycoprotein I and polymorphic variants G1691A of Factor V (factor V Leiden, FVL) and G20210A of prothrombin gene (G20210A) were studied in 16 patients with upper-extremity deep vein thrombosis (UEDVT). Most of patients with this syndrome have elevated values of these antibodies. Two of these patients are heterozygous carriers for G20210A and 1 - for FVL.

View Article and Find Full Text PDF

In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells.

View Article and Find Full Text PDF