Publications by authors named "Baletto F"

We compare the assembly of individual Au nanoparticles in a vacuum and between two Au(111) surfaces classical molecular dynamics on a timescale of 100 ns. In a vacuum, the assembly of three nanoparticles used as seeds, initially showing decahedral, truncated octahedral and icosahedral shapes with a diameter of 1.5-1.

View Article and Find Full Text PDF

The optimal design of nanoparticles and nanoalloys arises from the control of their morphology which depends on the synthesis process they undergo. Coalescence is widely accepted as one of the most common synthetic mechanisms, and it occurs both in the liquid and gas phases. Coalescence is when two existing seeds collide and aggregate into a larger object.

View Article and Find Full Text PDF

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents.

View Article and Find Full Text PDF

This first-principles study predicts Pt nanoparticles as a catalyst for ethanol reactions. Starting from the adsorption properties, we shed light on the effectiveness of Pt-based nanoclusters as ethanol catalysts. First, the ethanol adsorption on Pt shows that the most stable site positions the molecule with the oxygen anchored on top of an edge, whereas CH is oriented towards the facet and the molecule remains in -symmetry.

View Article and Find Full Text PDF

A non-trivial interplay rules the relationship between the structure and the chemophysical properties of a nanoparticle. In this context, characterization experiments, molecular dynamics simulations and electronic structure calculations may allow the variables that determine a given property to be pinpointed. Conversely, a rigorous computational characterization of the geometry and chemical ordering of metallic nanoparticles and nanoalloys enables discrimination of which descriptors could be linked with their stability and performance.

View Article and Find Full Text PDF

Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Au ( ≤ 4) clusters and Ar, Kr, and Xe.

View Article and Find Full Text PDF

We show that optical properties change when the fullerene structures of Au, Cuand Aginflate and deflate. We first observe significant differences in the extinction spectra employing a classical approach based on the Green's dyadic method. By means of real-time time-dependent density functional theory.

View Article and Find Full Text PDF

We studied the formation of AuRh nanoalloys (between 20-150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one-by-one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core-shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities.

View Article and Find Full Text PDF

The physicochemical properties of small metal clusters strongly depend on their precise geometry. Determining such geometries, however, is challenging, particularly for clusters formed by multiple elements. In this work, we combine infrared multiple photon dissociation spectroscopy and density functional theory calculations to investigate the lowest-energy structures of Pd doped gold clusters, PdAu ( ≤ 10).

View Article and Find Full Text PDF

The simulation and analysis of the thermal stability of nanoparticles, a stepping stone towards their application in technological devices, require fast and accurate force fields, in conjunction with effective characterisation methods. In this work, we develop efficient, transferable, and interpretable machine learning force fields for gold nanoparticles based on data gathered from Density Functional Theory calculations. We use them to investigate the thermodynamic stability of gold nanoparticles of different sizes (1 to 6 nm), containing up to 6266 atoms, concerning a solid-liquid phase change through molecular dynamics simulations.

View Article and Find Full Text PDF

We investigate the impact of the formation process of Cu nanoparticles on the distribution of adsorption sites and hence on their activity. Using molecular dynamics, we model formation pathways characteristic of physical synthesis routes as the annealing of a liquid droplet, the growth proceeding via the addition of single atoms, and the coalescence of individual nanoparticles. Each formation process leads to different and characteristic size-dependent distributions of their adsorption sites, catalogued and monitored on-the-fly by means of a suitable geometrical descriptor.

View Article and Find Full Text PDF

Predicting when phase changes occur in nanoparticles is fundamental for designing the next generation of devices suitable for catalysis, biomedicine, optics, chemical sensing and electronic circuits. The estimate of the temperature at which metallic nanoparticles become liquid is, however, a challenge and a standard definition is still missing. We discover a universal feature in the distribution of the atomic-pair distances that distinguishes the melting transition of monometallic nanoparticles.

View Article and Find Full Text PDF

Silver doping is a valuable route to modulate the structural, electronic, and optical properties of gold clusters. We combine photofragmentation experiments with density functional theory calculations to investigate the relative stability of cationic Ag doped Au clusters, AgAu (N ≤ 40). The mass spectra of the clusters after photofragmentation reveal marked drops in the intensity of AgAu , AgAu , and AgAu , indicating a higher relative stability of these sizes.

View Article and Find Full Text PDF

To elucidate the effect of the architecture of supported bimetallic nanocatalysts, we developed a new lattice kinetic Monte Carlo based on the classifying and counting adsorption sites with respect to their generalized coordination number. We employed this tool to estimate the activity of MgO-supported PtNi nanoalloys for oxygen reduction. We demonstrated that the presence of Ni atoms in contact with the substrate massively enhances their activity with at least a 7-order of magnitude increase in the turnover of water production with respect to the case where only Pt lay at the interface.

View Article and Find Full Text PDF

We develop a multi-scale approach towards the design of metallic nanoparticles with applications as catalysts in electrochemical reactions. The here discussed method exploits the relationship between nanoparticle architecture and electrochemical activity and is applied to study the catalytic properties of MgO(100)-supported Pt nanosystems undergoing solid-solid and solid-liquid transitions. We observe that a major increment in the activity is associated to the reconstruction of the interface layers, supporting the need for a full geometrical characterisation of such structures also when in-operando.

View Article and Find Full Text PDF

At the nanoscale, the investigation of structural features becomes fundamental as we can establish relationships between cluster geometries and their physicochemical properties. The peculiarity lies in the variety of shapes often unusual and far from any geometrical and crystallographic intuition clusters can assume. In this respect, we should treat and consider nanoparticles as a new form of matter.

View Article and Find Full Text PDF

Because size and shape can affect the chemo-physical properties of nanoparticles, we extend the use of geometrical descriptors to sequence a genome of monometallic nanoparticles. Selecting the generalised coordination number as a descriptor, the derived geometrical genome distinguishes, catalogues, and counts the variety of adsorption sites available on each isomer with a diameter up to 10 nm, therefore it depends on the nanoparticle size and shape. This procedure allows us to elucidate the effects of morphological diversity within a sample and those of thermally activated structural rearrangements among isomers on nanocatalyst activity.

View Article and Find Full Text PDF