Publications by authors named "Balekudru Devadas"

PH-797804 ((aS)-3-{3-bromo-4-[(2,4-difluorobenzyl)oxy]-6-methyl-2-oxopyridin-1(2H)-yl}-N,4-dimethylbenzamde) is a diarylpyridinone inhibitor of p38 mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. Due to steric constraints imposed by the pyridinone carbonyl group and the 6- and 6'-methyl substituents of PH-797804, rotation around the connecting bond of the pyridinone and the N-phenyl ring is restricted. Density functional theory predicts a remarkably high rotational energy barrier of >30 kcal mol(-1), corresponding to a half-life of more than one hundred years at room temperature.

View Article and Find Full Text PDF

The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (-)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (-)-4a are described.

View Article and Find Full Text PDF

A series of N-aryl pyridinone inhibitors of p38 mitogen activated protein (MAP) kinase were designed and prepared based on the screening hit SC-25028 (1) and structural comparisons to VX-745 (5). The focus of the investigation targeted the dependence of potency and metabolic stability on the benzyloxy connectivity, the role of the C-6 position and the substitution pattern on the N-phenyl ring. Further optimization produced the highly selective and potent pyridinones 2 and 3.

View Article and Find Full Text PDF

A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat.

View Article and Find Full Text PDF

The identification and evolution of a series of potent and selective p38 inhibitors is described. p38 inhibitors based on a N-benzyl pyridinone high-throughput screening hit were prepared and their SAR explored. Their design was guided by ligand bound co-crystals of p38alpha.

View Article and Find Full Text PDF

PH-797804 is a diarylpyridinone inhibitor of p38alpha mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38alpha inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38alpha kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180 degrees rotation of the Met109-Gly110 peptide bond.

View Article and Find Full Text PDF

The integrin alpha(v)beta(3), vitronectin receptor, is expressed in a number of cell types and has been shown to mediate adhesion of osteoclasts to bone matrix, vascular smooth muscle cell migration, and angiogenesis. We recently disclosed the discovery of a tripeptide Arg-Gly-Asp (RGD) mimic, which has been shown to be a potent inhibitor of the integrin alpha(v)beta(3) and has excellent anti-angiogenic properties including its suppression of tumor growth in animal models. In other investigations involving RGD mimics, only compounds containing the S-isomers of the beta-amino acids have been shown to be potent.

View Article and Find Full Text PDF

Myristoyl-CoA: protein N-myristoyltransferase (Nmt) catalyses the covalent attachment of myristate to the N-terminal glycine of a small subset of cellular proteins produced during vegetative growth of Candida albicans. nmt447D is a mutant NMT allele encoding an enzyme with a Gly447-->ASP substitution and reduced affinity for myristoyl-CoA. Among isogenic NMT/NMT, NMT/ delta nmt and nmt delta/nmt447D strains, only nmt delta/nmt447D cells require myristate for growth on yeast/peptone/dextrose media (YPD) at 24 or 37 degrees C.

View Article and Find Full Text PDF