Nonreciprocal microwave devices play critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They impose unidirectional routing of readout signals and protect the quantum systems from unwanted noise originated by the output chain. However, cryogenic circulators and isolators are disadvantageous in scalable superconducting architectures because they use magnetic materials and strong magnetic fields.
View Article and Find Full Text PDFWe present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives.
View Article and Find Full Text PDFWe realize a microwave quantum-limited amplifier that is directional and can therefore function without the front circulator needed in many quantum measurements. The amplification takes place in only one direction between the input and output ports. Directionality is achieved by multipump parametric amplification combined with wave interference.
View Article and Find Full Text PDFWe demonstrate full frequency conversion in the microwave domain using a Josephson three-wave mixing device pumped at the difference between the frequencies of its fundamental eigenmodes. By measuring the signal output as a function of the intensity and phase of the three input signal, idler, and pump tones, we show that the device functions as a controllable three-wave beam splitter or combiner for propagating microwave modes at the single-photon level, in accordance with theory. Losses at the full conversion point are found to be less than 10(-2).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2007
We study a configuration for displacement detection consisting of a nanomechanical resonator coupled to both a radio frequency superconducting interference device and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations.
View Article and Find Full Text PDF