Background: Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFMicroalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions.
View Article and Find Full Text PDFWithin the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast).
View Article and Find Full Text PDFIn vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants).
View Article and Find Full Text PDFThe release of inadequately treated urban wastewater is the main cause of environmental pollution of aquatic ecosystems. Among efficient and environmentally friendly technologies to improve the remediation process, those based on microalgae represent an attractive alternative due to the potential of microalgae to remove nitrogen (N) and phosphorus (P) from wastewaters. In this work, microalgae were isolated from the centrate stream of an urban wastewater treatment plant and a native -like species was selected for studies on nutrient removal from centrate streams.
View Article and Find Full Text PDFWheat mutants with a reduced chlorophyll synthesis are affected by a defective control of the photosynthetic electron flow, but tend to recover a wild-type phenotype. The sensitivity of some mutants to light fluctuations suggested that cultivation outdoors could significantly impact productivity. Six mutant lines of or with their respective wild-type cultivars were cultivated with a regular seasonal cycle (October-May) in a semi-field experiment.
View Article and Find Full Text PDFMicroalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E ( family).
View Article and Find Full Text PDFThe Lycophyte Selaginella martensii efficiently acclimates to diverse light environments, from deep shade to full sunlight. The plant does not modulate the abundance of the Light Harvesting Complex II, mostly found as a free trimer, and does not alter the maximum capacity of thermal dissipation (NPQ). Nevertheless, the photoprotection is expected to be modulatable upon long-term light acclimation to preserve the photosystems (PSII, PSI).
View Article and Find Full Text PDFIn plants, the non-photochemical quenching of chlorophyll fluorescence (NPQ) induced by high light reveals the occurrence of a multiplicity of regulatory processes of photosynthesis, primarily devoted to photoprotection of photosystem I and II (PSI and PSII). The study of NPQ relaxation in darkness allows the separation of three kinetically distinct phases: the fast relaxing high-energy quenching qE, the intermediate relaxing phase and the nearly non-relaxatable photoinhibitory quenching. Several processes can underlie the intermediate phase.
View Article and Find Full Text PDFMicroalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
February 2019
As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role.
View Article and Find Full Text PDFIt is important to characterize the microorganisms involved in biodeterioration processes to understand their effects on cultural assets and to define an efficient strategy for protecting artworks, monuments, and buildings from microbiological recolonization. In this study, we analyzed the microbial communities dwelling on the verso (front) and recto (back) sides of a 17th century easel painting attributed to Carlo Bononi, an Italian artist of the first Baroque period. Cultivable bacteria and fungi colonizing the painting were isolated and identified in order to characterize the microbial community possibly involved in deteriorating the pictorial layer of the painting.
View Article and Find Full Text PDFBasic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes.
View Article and Find Full Text PDFThe flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed.
View Article and Find Full Text PDFVascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods.
View Article and Find Full Text PDFAlong with cadmium, lead, mercury and other heavy metals, chromium is an important environmental pollutant, mainly concentrated in areas of intense anthropogenic pressure. The effect of potassium dichromate on Lemna minor populations was tested using the growth inhibition test. Cyto-histological and physiological analyses were also conducted to aid in understanding the strategies used by plants during exposure to chromium.
View Article and Find Full Text PDFNeochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N.
View Article and Find Full Text PDFEvolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes.
View Article and Find Full Text PDFThe high cost of recombinant enzymes for the production of biofuel from ligno-cellulosic biomass is a crucial factor affecting the economic sustainability of the process. The use of plants as biofactories for the production of the suitable recombinant enzymes might be an alternative to microbial fermentation. In the case of enzyme accumulation in chloroplasts, it is fundamental to focus on the issue of full photosynthetic efficiency of transplastomic plants in the field where they might be exposed to abiotic stress such as high light intensity and high temperature.
View Article and Find Full Text PDFIn the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation.
View Article and Find Full Text PDFThe aquatic plant Trapa natans L. is highly resistant to Mn and moderately resistant to Mo, mainly thanks to its ability to sequestrate the metals by chelation in the vacuole. Excess of Mn and Mo causes somewhat aspecific toxicity symptoms in plants, but the main target of their toxicity seems to be the photosynthetic process.
View Article and Find Full Text PDFThe low photosynthetic activity of fleshy green fruits is currently attributed to their special anatomy rather than to a down-regulation of photosystem II (PSII). However, it is unclear whether the organization of PSII, which is highly conserved in leaves, is also shared by non-foliar structures, such as fleshy fruits. To obtain new information on this aspect, the photosynthetic activity and the organization of PSII were investigated in the berry of Arum italicum Miller during maturation (ivory to green) and early ripening (green to yellow).
View Article and Find Full Text PDFNeochloris oleoabundans is considered one of the most promising oil-rich microalgae because of its ability to store lipids under nitrogen starvation. However, high biomass densities, required for applications on medium to large scale, are not reached in this condition of growth. As previous studies on other microalgae have shown that mixotrophy allows to obtain higher biomass in comparison to autotrophic cultures, we performed morphophysiological analyses in order to test the mixotrophic growth capability of N.
View Article and Find Full Text PDFRoom temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution.
View Article and Find Full Text PDF