Publications by authors named "Bald I"

Dynamic surface-enhanced Raman spectroscopy (SERS) is nowadays one of the most interesting applications of SERS, in particular for single molecule studies. In fact, it enables the study of real-time processes at the molecular level. This review summarizes the latest developments in dynamic SERS techniques and their applications, focusing on new instrumentation, data analysis methods, temporal resolution and sensitivity improvements, and novel substrates.

View Article and Find Full Text PDF

Water-in-oil microemulsions, as stable colloidal dispersions from quasi-ternary mixtures, have been used in diverse applications, including nanoreactors for confined chemical processes. Their use as soft templates not only includes nanomaterial synthesis but also the interfacial assembly of nanoparticles in hybrid nanostructures. Especially the hierarchical arrangement of different types of nanoparticles over a surface in filament networks constitutes an interesting bottom-up strategy for facile and tunable film coating.

View Article and Find Full Text PDF

DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures.

View Article and Find Full Text PDF

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.

View Article and Find Full Text PDF

Plasmon-driven chemical conversion is gaining burgeoning interest in the field of heterogeneous catalysis. Herein, we study the reactivity of N-methyl-4-sulfanylbenzamide (NMSB) at nanocavities of gold and silver nanoparticle aggregates under plasmonic excitation to gain understanding of the respective reaction mechanism. NMSB is a secondary amide, which is a frequent binding motive found in peptides and a common coupling product of organic molecules and biomolecules.

View Article and Find Full Text PDF

Membrane-active antimicrobial materials are promising substances to fight antimicrobial resistance. Herein, crystallization-driven self-assembly (CDSA) is employed for the preparation of nanoparticles with different morphologies, and their bioactivity is explored. Block copolymers (BCPs) featuring a crystallizable and antimicrobial block were synthesized using a combination of ring-opening and photoiniferter RAFT polymerizations.

View Article and Find Full Text PDF

The detection of a single-enzyme catalytic reaction by surfaced-enhanced Raman scattering (SERS) is presented by utilizing DNA origami-based plasmonic antennas. A single horseradish peroxidase (HRP) was accommodated on a DNA origami nanofork plasmonic antenna (DONA) containing gold nanoparticles, enabling the tracing of single-molecule SERS signals during the peroxide reduction reaction. This allows monitoring of the structure of a single enzymatic catalytic center and products under suitable liquid conditions.

View Article and Find Full Text PDF

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions.

View Article and Find Full Text PDF

Cytochrome C, an evolutionarily conserved protein, plays pivotal roles in cellular respiration and apoptosis. Understanding its molecular intricacies is essential for both academic inquiry and potential biomedical applications. This study introduces an advanced single-molecule surface-enhanced Raman scattering (SM-SERS) system based on DNA origami nanoantennas (DONAs), optimized to provide unparalleled insights into protein structure and interactions.

View Article and Find Full Text PDF

Radiation cancer therapies use different ionizing radiation qualities that damage DNA molecules in tumor cells by a yet not completely understood plethora of mechanisms and processes. While the direct action of the radiation is significant, the byproducts of the water radiolysis, mainly secondary low-energy electrons (LEEs, <20 eV) and reactive oxygen species (ROS), can also efficiently cause DNA damage, in terms of DNA strand breakage or DNA interstrand cross-linking. As a result, these types of DNA damage evolve into mutations hindering DNA replication, leading to cancer cell death.

View Article and Find Full Text PDF

We report the observation of hotspot-induced emitters and photoluminescence enhancement of up to 42-fold from DNA origami-assisted plasmonic dimer nanoantennas upon excess polarized laser illumination. The presence of DNA and laser polarization alignment along the dimer axis are critical for the generation of bright emitters responsible for the observed PL increase. The emission spectrum reveals characteristic Raman peaks of amorphous carbon, suggesting the formation of carbon-based emitters in the nanoantenna due to the plasmonic hotspots at the longitudinal antenna resonance.

View Article and Find Full Text PDF

A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented by combining a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. Combining different nanoparticle species with a DNA origami nanofork to form DNA origami nanoantennas (DONAs), the plasmonic nanoparticle dimers can be optimized for a specific excitation wavelength in SERS. The preparation of such nanoparticle dimers is robust enough to enable the characterization of SERS intensities and SERS enhancement factors of dye-modified DONAs on a single dimer level by measuring in total several thousands of dimers from five different dimer designs, each functionalized with three different Raman reporter molecules and measured at four different excitation wavelengths.

View Article and Find Full Text PDF
Article Synopsis
  • - SERS (Surface-enhanced Raman scattering) is a powerful technique that allows for the detection of individual molecules by using high field enhancement, providing detailed spectroscopic information that surpasses traditional methods.
  • - The protocol described focuses on using a DNA origami nanoantenna (DONA) combined with atomic force microscopy (AFM) and Raman spectroscopy to achieve single-molecule detection.
  • - By using a DNA origami fork structure with gold nanoparticles, the setup creates a gap that enhances SERS signals by up to 10 times, allowing researchers to analyze single molecules more effectively.
View Article and Find Full Text PDF

DNA origami nanostructures are self-assembled into almost arbitrary two- and three-dimensional shapes from a long, single-stranded viral scaffold strand and a set of short artificial oligonucleotides. Each DNA strand can be functionalized individually using well-established DNA chemistry, representing addressable sites that allow for the nanometre precise placement of various chemical entities such as proteins, molecular chromophores, nanoparticles, or simply DNA motifs. By means of microscopic and spectroscopic techniques, these entities can be visualized or detected, and either their mutual interaction or their interaction with external stimuli such as radiation can be studied.

View Article and Find Full Text PDF

The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties.

View Article and Find Full Text PDF
Article Synopsis
  • Photodynamic therapy (PDT) treats cancer by using light to activate a photosensitizer, leading to the generation of reactive oxygen species that damage DNA.
  • Recent research has shifted focus from precious metals to non-noble metal complexes as potential photosensitizers for PDT.
  • A study using DNA origami technology found that the luminescent metal complex [Cr(ddpd)] efficiently causes DNA strand breaks upon UV/Vis illumination, achieving a quantum yield of 1-4%.
View Article and Find Full Text PDF

Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e.

View Article and Find Full Text PDF

The study of biologically relevant molecules and their interaction with external stimuli on a single molecular scale is of high importance due to the availability of distributed rather than averaged information. Surface enhanced Raman scattering (SERS) provides direct chemical information, but is rather challenging on the single molecule (SM) level, where it is often assumed to require a direct contact of analyte molecules with the metal surface. Here, we detect and investigate the molecular states of single hemin by SM-SERS.

View Article and Find Full Text PDF

G-rich telomeric DNA plays a major role in the stabilization of chromosomes and can fold into a plethora of different G-quadruplex structures in the presence of mono- and divalent cations. The reversed human telomeric DNA sequence (5'-(GGG ATT); RevHumTel) was previously shown to have interesting properties that can be exploited for chemical sensing and as a chemical switch in DNA nanotechnology. Here, we analyze the specific G-quadruplex structures formed by RevHumTel in the presence of K, Na, Mg and Ca cations using circular dichroism spectroscopy (CDS) and Förster resonance energy transfer (FRET) based on fluorescence lifetimes.

View Article and Find Full Text PDF
Article Synopsis
  • Localized surface plasmon resonances on noble metal nanoparticles (NPs), particularly gold (AuNPs), can enhance chemical reactions of adsorbed ligands through elevated temperatures and strong electric fields.
  • The study investigates the dehalogenation of halogenated thiophenols using surface enhanced Raman scattering (SERS) to analyze reaction kinetics and products, revealing similar reaction rates despite varying bond energies.
  • Analysis of AuNP electronic properties using x-ray photoelectron spectroscopy shows that ligand adsorption alters these properties, indicating that plasmonic features of AuNPs predominantly influence reaction rates and offering insights into the design of catalytic systems.
View Article and Find Full Text PDF
Article Synopsis
  • Ionizing radiation in cancer therapy damages tumor DNA by creating reactive secondary species like low-energy electrons (LEEs), which can induce DNA strand breaks.
  • The DNA origami method allows for the measurement of LEE-induced DNA damage, but it has only been successfully used for single-stranded DNA so far.
  • This research compares double strand breaks in specific DNA sequences to single strand breaks when exposed to LEEs, finding that strand breaks occur most effectively at energies of 7 and 10 eV, suggesting a common mechanism of dissociative electron attachment.
View Article and Find Full Text PDF

In this paper, we propose a consistent mechanism of protein microcapsule formation upon ultrasound treatment. Aqueous suspensions of bovine serum albumin (BSA) microcapsules filled with toluene are prepared by use of high-intensity ultrasound following a reported method. Stabilization of the oil-in-water emulsion by the adsorption of the protein molecules at the interface of the emulsion droplets is accompanied by the creation of the cross-linked capsule shell due to formation of intermolecular disulfide bonds caused by highly reactive species like superoxide radicals generated sonochemically.

View Article and Find Full Text PDF
Article Synopsis
  • * X-ray photoelectron spectroscopy (XPS) studies reveal that the binding energy of Au 4f states is shifted by about 0.8 eV in the outer layers of 4-nitrothiophenol coated AuNPs, indicating enhanced electron transport to the attached molecules.
  • * The findings highlight the significance of surface dipoles and how they vary with different ligands, guiding future engineering of electronic properties for applications in catalysis and solar energy conversion.
View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations.

View Article and Find Full Text PDF

We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy.

View Article and Find Full Text PDF