Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σ/σ = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts.
View Article and Find Full Text PDFFormation of metal hydrides is a signature chemical property of hydrogen and it can be leveraged to enact both storage and detection of this technologically important yet extremely volatile gas. Palladium shows particular promise as a hydrogen storage medium as well as a platform for creating rapid and reliable H optical sensor devices. Furthermore, alloying Pd with other noble metals provides a technologically simple yet powerful way of enacting control over the structural and catalytic properties of the resultant material.
View Article and Find Full Text PDFLithography-free black metals composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and the cost reduction of devices based on such structures. We demonstrate multi-layer black metal layered structures with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterization of thin SiO2 and Si films sandwiched between two Au layers by way of experimental electromagnetic radiation absorption and thermal radiation emission measurements as well as finite difference time domain (FDTD) numerical simulations is presented.
View Article and Find Full Text PDFA hydrogen sensor based on plasmonic metasurfaces is demonstrated to exhibit the industry-required 10 s reaction time and sensitivity. It consists of a layer of either Y or WO sandwiched between a top Pd nanodisk and a Au mirror at the base. The phase change layer (Y, WO) reacts with hydrogen, and the corresponding change of the refractive index (permittivity) is detected by the spectral shift of the resonance dip in reflectance at the IR spectral window.
View Article and Find Full Text PDFThe nanoscale composition of silk defining its unique properties via a hierarchial structural anisotropy needs to be analysed at the highest spatial resolution of tens of nanometers corresponding to the size of fibrils made of β-sheets, which are the crystalline building blocks of silk. Nanoscale optical and structural properties of silk have been measured from 100 nm thick longitudinal slices of silk fibers with ca. 10 nm resolution, the highest so far.
View Article and Find Full Text PDFThermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.
View Article and Find Full Text PDFPolariscopy is demonstrated using hyperspectral imaging with a focal plane array (FPA) detector in the infrared (IR) spectral region under illumination by thermal and synchrotron light sources. FPA Fourier-transform IR (FTIR) imaging microspectroscopy is useful for monitoring real time changes at specific absorption bands when combined with a high brightness synchrotron source. In this study, several types of samples with unique structural motifs were selected and used for assessing the capability of polariscopy under this FPA-FTIR imaging technique.
View Article and Find Full Text PDFOctahedral anatase particles (OAP, with eight equivalent {101} facets) and decahedral anatase particles (DAP, with two additional {001} facets) were modified with nanoparticles of noble metals (Au, Ag, Cu). The titania morphology, expressed by the presence of different arrangements of exposed crystal facets, played a key role in the photocatalytic properties of metal-modified faceted titania. In the UV/vis systems, two-faceted configuration of DAP was more favorable for the reaction efficiency than single-faceted OAP because of an efficient charge separation described by the transfer of electrons to {101} facets and holes to {001} facets.
View Article and Find Full Text PDFEnhancement of X-ray emission was observed from a micro-jet of a nano-colloidal gold suspension in air under double-pulse excitation of ultrashort (40 fs) near-IR laser pulses. Temporal and spatial overlaps between the pre-pulse and the main pulse were optimized for the highest X-ray emission. The maximum X-ray intensity was obtained at a 1-7 ns delay of the main pulse irradiation after the pre-pulse irradiation with the micro-jet position shifted along the laser beam propagation.
View Article and Find Full Text PDFFirst principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au-Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au-Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au-Ag alloy and compared with experimental results.
View Article and Find Full Text PDFAll-dielectric resonant micro- and nano-structures made of high-index dielectrics have recently emerged as a promising surface-enhanced Raman scattering (SERS) platform which can complement or potentially replace the metal-based counterparts in routine sensing measurements. These unique structures combine the highly-tunable optical response and high field enhancement with the non-invasiveness, i.e.
View Article and Find Full Text PDFA thermocouple of Au-Ni with only 2.5-μm-wide electrodes on a 30-nm-thick SiN membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated by laser as well as an electron beam.
View Article and Find Full Text PDFWrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFFemtosecond double-pulsed laser excitation of a water film in air showed enhancements of X-ray intensity as compared with single pulse irradiation. The position of the highest yield of X-rays strongly depends on temporal separation between the pre-pulse and the main-pulse (energy ratios where ∼ 1 : 10). The strongest X-ray emission was observed at 10-15 ns delay of the main-pulse.
View Article and Find Full Text PDFFor hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequentially alternating fashion to create a layered structure on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 μm wavelength light.
View Article and Find Full Text PDFPhotoacoustic signal enhancements were observed with a pair of time-delayed femtosecond pulses upon excitation of gold nanosphere colloidal suspension. A systematic experimental investigation of photoacoustic intensity within the delay time, Δt = 0 to 15 ns, was carried out. The results revealed a significant enhancement factor of ∼2 when the pre-pulse energy is 20-30% of the total energy.
View Article and Find Full Text PDFNowadays, optical tweezers have undergone explosive developments in accordance with a great progress of lasers. In the last decade, a breakthrough brought optical tweezers into the nano-world, overcoming the diffraction limit. This is called plasmonic optical tweezers (POT).
View Article and Find Full Text PDFMolecular alignment underpins optical, mechanical, and thermal properties of materials, however, its direct measurement from volumes with micrometer dimensions is not accessible, especially, for structurally complex bio-materials. How the molecular alignment is linked to extraordinary properties of silk and its amorphous-crystalline composition has to be accessed by a direct measurement from a single silk fiber. Here, we show orientation mapping of the internal silk fiber structure via polarisation-dependent IR absorbance at high spatial resolution of 4.
View Article and Find Full Text PDFDomestic () and wild () silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.
View Article and Find Full Text PDFNano-textured Au surfaces were prepared on pre-stretched 2D polystyrene (PS) sheets sputtered with different thicknesses of Au. The Au-coated PS was subjected to thermal annealing above the glass transition temperature at ∼150 °C, thus undergoing surface area rescaling via a volume phase transition. The yellow color of the Au changed from the typical mirror-like appearance to a diffusive dark yellow, progressing to dark brown at the smallest feature size, hence, electromagnetic energy was coupled into the substrate.
View Article and Find Full Text PDFWe propose a novel class of refractive optical elements by wrinkling the conical surface of a usual (conical) axicon, which leads to geometrical singularities (cusps). Such wrinkled axicons have been fabricated at the micron scale by using three-dimensional femtosecond-laser photopolymerization technique and we report on their experimental and numerical characterization. The beam shaping capabilities of these structures are discussed for both intensity and phase, which includes topological beam shaping that results from azimuthally modulated optical spin-orbit interaction.
View Article and Find Full Text PDFSilk patterns in a film of amorphous water-soluble fibroin are created by tailored exposure to femtosecond-laser pulses (1030 nm/230 fs) without the use of photo-initiators. This shows that amorphous silk can be used as a negative tone photo-resist. It is also shown that water insoluble crystalline silk films can be precisely ablated from a glass substrate achieving the patterns of crystalline silk gratings on a glass substrate.
View Article and Find Full Text PDF