Publications by authors named "Balazy M"

To explore the utility of the azinomycin B chromophore as a platform for the development of major-groove binding small molecules, we have prepared a series of 3-methoxy-5-methylnaphthalene derivatives containing diamine, triamine, and carbohydrate linker moieties. All bis- and tris-azinomycin derivatives are intercalators that display submicromolar binding affinities for calf-thymus DNA, as revealed by viscometry measurements and fluorescent intercalator displacement (FID) assays, respectively. Although the tightest binding ligand 1d (K = 2.

View Article and Find Full Text PDF

Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress.

View Article and Find Full Text PDF

We tested a series of 11 new aminothiopyrimidones on the activity of inducible nitric oxide synthase (iNOS) and prostaglandin G/H synthase-1 and 2 (COX-1 and COX-2) in the whole human blood and monocyte-macrophage J774 cell line. To induce COX-2 and iNOS, blood samples and J774 cells were stimulated with bacterial lipopolysaccharide (LPS) in the absence or presence of the test compounds. After incubation, the plasma and the supernatants of culture media were collected for the measurement of TxB(2) and PGE(2) by a specific enzyme-immunoassay and determination of nitrite by a colorimetric assay.

View Article and Find Full Text PDF

A reaction of arachidonic acid with the nitrogen dioxide radical (*NO2) or its precursors (peroxynitrite, nitrous acid, nitrogen trioxide) generates a group of nitro lipids named nitroeicosanoids. A distinct feature of this reaction is abundant formation of four trans isomers of arachidonic acid (TAA) via reversible addition of the NO2 radical to the arachidonic acid cis double bonds. This cis-trans isomerization is biologically relevant because many pathologies that involve NO formation such as inflammation, hyperoxia, hypercapnia or exposure to cigarette smoke increase the TAA levels in cells, tissues and in the systemic circulation.

View Article and Find Full Text PDF

Our work contributes to the understanding of the mechanisms of drug resistance in epilepsis. This study aimed to investigate i) the levels of expression of P-glycoprotein (P-gp), and multidrug resistance-associated proteins (MRP)1 and 2, ii) the activation of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), and iii) the relationship between increased P-gp and MRPs expression and PXR and CAR activation, in immortalized rat brain microvascular endothelial cell lines, GPNT and RBE4, following treatment with the antiepileptic drugs (AEDs), topiramate, phenobarbital, carbamazepine, tiagabine, levetiracetam, and phenytoin, using Western blotting and immunocytochemistry methods. Carbamazepine, phenobarbital and phenytoin induced the highest levels of P-gp and MPRs expression that was associated with increased activation of PXR and CAR receptors as compared to levetiracetam, tiagabine and topiramate.

View Article and Find Full Text PDF

Fatty acid nitration is a recently discovered process that generates biologically active nitro lipids; however, its mechanism has not been fully characterized. For example, some structural details such as vinyl and allyl isomers of the nitro fatty acids have not been established. To characterize lipids that originated from a biomimetic reaction of *NO(2) with oleic acid, we synthesized several isomers of nitro oleic acids and studied their chromatography and mass spectra by various techniques of mass spectrometry.

View Article and Find Full Text PDF

Nitrative stress is an important regulator of vascular tone. We have recently described that trans-arachidonic acids (TAA) are major products of NO(2)(.)-mediated isomerization of arachidonic acid in cell membranes and that nitrative stress increases TAA levels leading to neural microvascular degeneration.

View Article and Find Full Text PDF

Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized.

View Article and Find Full Text PDF

We studied the effects of fibrous antigorite on mesothelial MeT-5A and monocyte-macrophage J774 cell lines to further understand cellular mechanisms induced by asbestos fibers leading to lung damage and cancer. Antigorite is a mineral with asbestiform properties, which tends to associate with chrysotile or tremolite, and frequently occurs as the predominant mineral in the veins of several serpentinite rocks found abundantly in the Western Alps. Particles containing antigorite are more abundant in the breathing air of this region than those typically found in urban ambient air.

View Article and Find Full Text PDF

Neovascularization after an ischemic insult is a beneficial attempt to salvage the injured tissue. Yet, despite the production of angiogenic factors within ischemic tissues, compensatory growth of new vessels fails to provide adequate vascularization. Thus, we hypothesized that local factors counter efficient revascularization.

View Article and Find Full Text PDF

Nitrative stress has an important role in microvascular degeneration leading to ischemia in conditions such as diabetic retinopathy and retinopathy of prematurity. Thus far, mediators of nitrative stress have been poorly characterized. We recently described that trans-arachidonic acids are major products of NO(2)(*)-mediated isomerization of arachidonic acid within the cell membrane, but their biological relevance is unknown.

View Article and Find Full Text PDF

Trans arachidonic acid isomers (trans-AA) constitute a new group of trans fatty acids (trans-FA) generated in vivo via endogenous cis-trans isomerization stimulated by the NO2 radical. Because both NO2 and trans-FA have been implicated as causative factors in cancer, we studied the effect of the trans-AA isomers on proliferation and viability of human promyelocytic (HL-60) cells. The four trans arachidonic (trans-AA) acid isomers synthesized by us have been presently tested with respect to their competence to affect the proliferation and viability of human promyeolocytic HL-60 cells in culture.

View Article and Find Full Text PDF

5,6-trans-AA (5,6-TAA, where TAA stands for trans-arachidonic acid) is a recently identified trans fatty acid that originates from the cis-trans isomerization of AA initiated by the NO2 radical. This trans fatty acid has been detected in blood circulation and we suggested that it functions as a lipid mediator of the toxic effects of NO2. To understand its role as a lipid mediator, we studied the metabolism of 5,6-TAA by liver microsomes stimulated with NADPH.

View Article and Find Full Text PDF

A novel, facile synthesis of 5,6-trans-epoxyeicosatrienoic acid (5,6-trans-EET) from 5,6-trans-arachidonic acid by iodolactonization and alkaline de-iodation is described along with characterization by mass spectrometry (LC-MS, negative ions) and NMR and comparison with 5,6-cis-EET.

View Article and Find Full Text PDF

When a spontaneous autoxidation of arachidonic acid to prostaglandin-like products was first described almost 40 years ago, it was thought to be an artifact that interfered with the detection of enzymatically generated prostaglandins. It has now been generally accepted that the autoxidation of arachidonic acid occurs in vivo and leads to formation of isoprostanes and other products. Sensitive methods can detect the isoprostanes as useful biological markers, which help to estimate, non-invasively, the burden of free radicals formed in pathologies resulting from oxidative stress.

View Article and Find Full Text PDF

Endogenous trans fatty acids originate from diet, but recent studies also suggest that cis-trans isomerization of fatty acids is possible by nitrogen dioxide radical, a product of NO and nitrite oxidation. We developed a method for quantitative analysis of four trans-arachidonic acids (TAA) in human plasma using isotopic dilution gas chromatography/mass spectrometry (GC/MS) with deuterium-labeled internal standard. Esterification of the plasma fatty acid extract with pentafluorobenzyl (PFB) bromide followed by high-performance liquid chromatography purification yielded a fairly pure fraction containing TAA-PFB esters that was analyzed by GC/MS.

View Article and Find Full Text PDF

Recent advancements in mass spectrometry, especially the development of electrospray tandem mass spectrometry (ESI/LC/MS2) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI/TOF), have greatly facilitated analysis of complex biomolecules. It has now become possible to profile, in relatively short periods of time, large multicomponent groups of compounds biosynthesized by biological systems. The efficiency and accuracy of analysis have led to the development of new concepts of mass spectrometric profiling, mapping, and imaging.

View Article and Find Full Text PDF

Considerable amount of work has been done in the area of enzymatic and non-enzymatic oxidation of arachidonic acid. This effort resulted in understanding of the functions of lipid mediators--eicosanoids in various aspects of health and disease. A mechanism by which aspirin exerts therapeutic effects puzzled pharmacologists for a long time until John Vane, in 1971, discovered that aspirin and its congeners block formation of prostaglandins, a class of lipids that originate from oxidation of arachidonic acid by cyclooxygenase.

View Article and Find Full Text PDF

Trans-arachidonic acids (trans-AA) are products of cis-trans isomerization of arachidonic acid by nitrogen dioxide radical (NO(2)), and occur in vivo, but their metabolism is unknown. We found that hepatic microsomes oxidized trans-AA via cytochrome P450/NADPH system to epoxides, which were hydrolyzed by epoxide hydrolase to diols (DiHETEs). 14,15-trans-AA produced one erythro diol and three threo diols each having one trans double bond.

View Article and Find Full Text PDF

Incubation of porcine coronary artery rings and cardiac muscle tissue in Krebs buffer followed by GC/MS analysis of the headspace gas revealed two gases, carbonyl sulfide (COS) and sulfur dioxide (SO(2)). The gases were identified by characteristic ions obtained by electron ionization, and by comparison of the retention time on a chromatographic column (GS GasPro) with standards of these gases. Stimulation of the arterial rings with acetylcholine and calcium ionophore A23187 increased the levels of SO(2) and COS in the vascular tissue.

View Article and Find Full Text PDF

Pulmonary intralobar arteries express heme oxygenase (HO)-1 and -2 and release carbon monoxide (CO) during incubation in Krebs buffer. Acute hypoxia elicits isometric tension development (0.77 +/- 0.

View Article and Find Full Text PDF

We examined the effects of heme administration (15 mg/kg IV) on indexes of renal carbon monoxide production and contrasted the renal functional response to heme in anesthetized rats pretreated and not pretreated with stannous mesoporphyrin (40 micromol/kg IV) to inhibit heme oxygenase or sodium meclofenamate (5 mg/kg IV plus infusion at 10 microg/kg per minute) to inhibit cyclooxygenase. In rats without drug pretreatment, heme administration decreased renal vascular resistance and increased renal blood flow, urine volume, and sodium excretion associated with augmented urinary excretion of 6-keto-PGF1alpha and enhanced concentration of carbon monoxide in the renal cortical microdialysate. Pretreatment with stannous mesoporphyrin did not prevent heme from producing renal vasodilation and increasing renal blood flow but abolished the diuretic and natriuretic responses.

View Article and Find Full Text PDF